Package 'NPflow'

Title: Bayesian Nonparametrics for Automatic Gating of Flow-Cytometry Data
Description: Dirichlet process mixture of multivariate normal, skew normal or skew t-distributions modeling oriented towards flow-cytometry data preprocessing applications. Method is detailed in: Hejblum, Alkhassimn, Gottardo, Caron & Thiebaut (2019) <doi: 10.1214/18-AOAS1209>.
Authors: Boris P Hejblum [aut, cre], Chariff Alkhassim [aut], Francois Caron [aut]
Maintainer: Boris P Hejblum <[email protected]>
License: LGPL-3 | file LICENSE
Version: 0.13.5
Built: 2024-09-12 07:33:32 UTC
Source: https://github.com/sistm/npflow

Help Index


Bayesian Nonparametrics for Automatic Gating of Flow Cytometry data

Description

Dirichlet process mixture of multivariate normal, skew normal or skew t-distributions modeling oriented towards flow-cytometry data pre-processing applications.

Details

Package: NPflow
Type: Package
Version: 0.13.5
Date: 2024-01-13
License: LGPL-3

The main function in this package is DPMpost.

Author(s)

Boris P. Hejblum, Chariff Alkhassim, Francois Caron — Maintainer: Boris P. Hejblum

References

Hejblum BP, Alkhassim C, Gottardo R, Caron F and Thiebaut R (2019) Sequential Dirichlet Process Mixtures of Multivariate Skew t-distributions for Model-based Clustering of Flow Cytometry Data. The Annals of Applied Statistics, 13(1): 638-660. <doi: 10.1214/18-AOAS1209> <arXiv: 1702.04407> https://arxiv.org/abs/1702.04407 doi:10.1214/18-AOAS1209

See Also

Useful links:


Burning MCMC iterations from a Dirichlet Process Mixture Model.

Description

Utility function for burning MCMC iteration from a DPMMclust object.

Usage

burn.DPMMclust(x, burnin = 0, thin = 1)

Arguments

x

a DPMMclust object.

burnin

the number of MCMC iterations to burn (default is 0).

thin

the spacing at which MCMC iterations are kept. Default is 1, i.e. no thining.

Value

a DPMMclust object minus the burnt iterations

Author(s)

Boris Hejblum

See Also

summary.DPMMclust


Point estimate of the partition for the Binder loss function

Description

Get a point estimate of the partition using the Binder loss function.

Usage

cluster_est_binder(c, logposterior)

Arguments

c

a list of vector of length n. c[[j]][i] is the cluster allocation of observation i=1...n at iteration j=1...N.

logposterior

vector of logposterior corresponding to each partition from c used to break ties when minimizing the cost function

Value

a list:

c_est:

a vector of length n. Point estimate of the partition

cost:

a vector of length N. cost[j] is the cost associated to partition c[[j]]

similarity:

matrix of size n x n. Similarity matrix (see similarityMat)

opt_ind:

the index of the optimal partition among the MCMC iterations.

Author(s)

Francois Caron, Boris Hejblum

References

F Caron, YW Teh, TB Murphy, Bayesian nonparametric Plackett-Luce models for the analysis of preferences for college degree programmes, Annals of Applied Statistics, 8(2):1145-1181, 2014.

DB Dahl, Model-Based Clustering for Expression Data via a Dirichlet Process Mixture Model, Bayesian Inference for Gene Expression and Proteomics, K-A Do, P Muller, M Vannucci (Eds.), Cambridge University Press, 2006.

See Also

similarityMat similarityMatC


Point estimate of the partition using the F-measure as the cost function.

Description

Get a point estimate of the partition using the F-measure as the cost function.

Usage

cluster_est_Fmeasure(c, logposterior)

Arguments

c

a list of vector of length n. c[[j]][i] is the cluster allocation of observation i=1...n at iteration j=1...N.

logposterior

a vector of logposterior corresponding to each partition from c used to break ties when minimizing the cost function

Value

a list:

c_est:

a vector of length n. Point estimate of the partition

cost:

a vector of length N. cost[j] is the cost associated to partition c[[j]]

similarity:

matrix of size n x n. Similarity matrix (see similarityMat)

opt_ind:

the index of the optimal partition among the MCMC iterations.

Author(s)

Francois Caron, Boris Hejblum

See Also

similarityMat


Point estimate of the partition using a modified Binder loss function

Description

Get a point estimate of the partition using a modified Binder loss function for Gaussian components

Usage

cluster_est_Mbinder_norm(c, Mu, Sigma, lambda = 0, a = 1, b = a, logposterior)

Arguments

c

a list of vector of length n. c[[j]][i] is the cluster allocation of observation i=1...n at iteration j=1...N.

Mu

is a list of length n composed of p x l matrices. Where l is the maximum number of components per partition.

Sigma

is list of length n composed of arrays containing a maximum of l p x p covariance matrices.

lambda

is a nonnegative tunning parameter allowing further control over the distance function. Default is 0.

a

nonnegative constant seen as the unit cost for pairwise misclassification. Default is 1.

b

nonnegative constant seen as the unit cost for the other kind of pairwise misclassification. Default is 1.

logposterior

vector of logposterior corresponding to each partition from c used to break ties when minimizing the cost function

Details

Note that he current implementation only allows Gaussian components.

The modified Binder loss function takes into account the distance between mixture components using #'the Bhattacharyya distance.

Value

a list:

c_est:

a vector of length n. Point estimate of the partition

cost:

a vector of length N. cost[j] is the cost associated to partition c[[j]]

similarity:

matrix of size n x n. Similarity matrix (see similarityMat)

opt_ind:

the index of the optimal partition among the MCMC iterations.

Author(s)

Chariff Alkhassim

References

JW Lau, PJ Green, Bayesian Model-Based Clustering Procedures, Journal of Computational and Graphical Statistics, 16(3):526-558, 2007.

DA Binder, Bayesian cluster analysis, Biometrika 65(1):31-38, 1978.

See Also

similarityMat similarityMatC similarityMat_nocostC


Gets a point estimate of the partition using posterior expected adjusted Rand index (PEAR)

Description

Gets a point estimate of the partition using posterior expected adjusted Rand index (PEAR)

Usage

cluster_est_pear(c)

Arguments

c

a list of vector of length n. c[[j]][i] is the cluster allocation of observation i=1...n at iteration j=1...N.

Value

a list:

c_est:

a vector of length n. Point estimate of the partition

pear:

a vector of length N. pear[j] is the posterior expected adjusted Rand index associated to partition c[[j]]

similarity:

matrix of size n x n. Similarity matrix (see similarityMat)

opt_ind:

the index of the optimal partition among the MCMC iterations.

Author(s)

Chariff Alkhassim

References

A. Fritsch, K. Ickstadt. Improved Criteria for Clustering Based on the Posterior Similarity Matrix, in Bayesian Analysis, Vol.4 : p.367-392 (2009)

See Also

similarityMat similarityMatC


Scatterplot of flow cytometry data

Description

Scatterplot of flow cytometry data

Usage

cytoScatter(
  cytomatrix,
  dims2plot = c(1, 2),
  gating = NULL,
  scale_log = FALSE,
  xlim = NULL,
  ylim = NULL,
  gg.add = list(theme())
)

Arguments

cytomatrix

a p x n data matrix, of n cell observations measured over p markers.

dims2plot

a vector of length at least 2, indicating of the dimensions to be plotted. Default is c(1, 2).

gating

an optional vector of length n indicating a known gating of the cells to be displayed. Default is NULL in which case no gating is displayed.

scale_log

a logical Flag indicating whether the data should be plotted on the log scale. Default is FALSE.

xlim

a vector of length 2 to specify the x-axis limits. Only used if dims2plot is of length 2Default is the data range.

ylim

a vector of length 2 to specify the y-axis limits. Only used if dims2plot is of length 2. Default is the data range.

gg.add

A list of instructions to add to the ggplot2 instruction (see gg-add). Default is list(theme()), which adds nothing. to the plot.

Examples

rm(list=ls())
#Number of data
n <- 500
#n <- 2000
set.seed(1234)
#set.seed(123)
#set.seed(4321)

# Sample data
m <- matrix(nrow=2, ncol=4, c(-1, 1, 1.5, 2, 2, -2, -1.5, -2))
p <- c(0.2, 0.1, 0.4, 0.3) # frequence des clusters

sdev <- array(dim=c(2,2,4))
sdev[, ,1] <- matrix(nrow=2, ncol=2, c(0.3, 0, 0, 0.3))
sdev[, ,2] <- matrix(nrow=2, ncol=2, c(0.1, 0, 0, 0.3))
sdev[, ,3] <- matrix(nrow=2, ncol=2, c(0.3, 0.15, 0.15, 0.3))
sdev[, ,4] <- .3*diag(2)
c <- rep(0,n)
z <- matrix(0, nrow=2, ncol=n)
for(k in 1:n){
 c[k] = which(rmultinom(n=1, size=1, prob=p)!=0)
 z[,k] <- m[, c[k]] + sdev[, , c[k]]%*%matrix(rnorm(2, mean = 0, sd = 1), nrow=2, ncol=1)
 #cat(k, "/", n, " observations simulated\n", sep="")
}

cytoScatter(z)

Slice Sampling of the Dirichlet Process Mixture Model with a prior on alpha

Description

Slice Sampling of the Dirichlet Process Mixture Model with a prior on alpha

Usage

DPMGibbsN(
  z,
  hyperG0,
  a = 1e-04,
  b = 1e-04,
  N,
  doPlot = TRUE,
  nbclust_init = 30,
  plotevery = N/10,
  diagVar = TRUE,
  use_variance_hyperprior = TRUE,
  verbose = TRUE,
  ...
)

Arguments

z

data matrix d x n with d dimensions in rows and n observations in columns.

hyperG0

prior mixing distribution.

a

shape hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001.

b

scale hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001. If 0, then the concentration is fixed set to a.

N

number of MCMC iterations.

doPlot

logical flag indicating whether to plot MCMC iteration or not. Default to TRUE.

nbclust_init

number of clusters at initialization. Default to 30 (or less if there are less than 30 observations).

plotevery

an integer indicating the interval between plotted iterations when doPlot is TRUE.

diagVar

logical flag indicating whether the variance of each cluster is estimated as a diagonal matrix, or as a full matrix. Default is TRUE (diagonal variance).

use_variance_hyperprior

logical flag indicating whether a hyperprior is added for the variance parameter. Default is TRUE which decrease the impact of the variance prior on the posterior. FALSE is useful for using an informative prior.

verbose

logical flag indicating whether partition info is written in the console at each MCMC iteration.

...

additional arguments to be passed to plot_DPM. Only used if doPlot is TRUE.

Value

a object of class DPMclust with the following attributes:

mcmc_partitions:

a list of length N. Each element mcmc_partitions[n] is a vector of length n giving the partition of the n observations.

alpha:

a vector of length N. cost[j] is the cost associated to partition c[[j]]

listU_mu:

a list of length N containing the matrices of mean vectors for all the mixture components at each MCMC iteration

listU_Sigma:

a list of length N containing the arrays of covariances matrices for all the mixture components at each MCMC iteration

U_SS_list:

a list of length N containing the lists of sufficient statistics for all the mixture components at each MCMC iteration

weights_list:

a list of length N containing the logposterior values at each MCMC iterations

logposterior_list:

a list of length N containing the logposterior values at each MCMC iterations

data:

the data matrix d x n with d dimensions in rows and n observations in columns.

nb_mcmcit:

the number of MCMC iterations

clust_distrib:

the parametric distribution of the mixture component - "gaussian"

hyperG0:

the prior on the cluster location

Author(s)

Boris Hejblum

Examples

rm(list=ls())
#Number of data
n <- 500
d <- 4
#n <- 2000
set.seed(1234)
#set.seed(123)
#set.seed(4321)

# Sample data
m <- matrix(nrow=d, ncol=4, c(-1, 1, 1.5, 2, 2, -2, -1.5, -2))
p <- c(0.2, 0.1, 0.4, 0.3) # frequence des clusters

sdev <- array(dim=c(d,d,4))
sdev[, ,1] <- 0.3*diag(d)
sdev[, ,2] <- c(0.1, 0.3)*diag(d)
sdev[, ,3] <- matrix(nrow=d, ncol=d, 0.15)
diag(sdev[, ,3]) <- 0.3
sdev[, ,4] <- 0.3*diag(d)
c <- rep(0,n)
z <- matrix(0, nrow=d, ncol=n)
for(k in 1:n){
 c[k] = which(rmultinom(n=1, size=1, prob=p)!=0)
 z[,k] <- m[, c[k]] + sdev[, , c[k]]%*%matrix(rnorm(d, mean = 0, sd = 1), nrow=d, ncol=1)
 #cat(k, "/", n, " observations simulated\n", sep="")
}

 # Set parameters of G0
 hyperG0 <- list()
 hyperG0[["mu"]] <- rep(0,d)
 hyperG0[["kappa"]] <- 0.001
 hyperG0[["nu"]] <- d+2
 hyperG0[["lambda"]] <- diag(d)/10

 # hyperprior on the Scale parameter of DPM
 a <- 0.0001
 b <- 0.0001

 # Number of iterations
 N <- 30

 # do some plots
 doPlot <- TRUE
 nbclust_init <- 30



 ## Data
 ########
 library(ggplot2)
 p <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,]), aes(x=X, y=Y))
       + geom_point()
       + ggtitle("Toy example Data"))
 p


 ## alpha priors plots
 #####################
 prioralpha <- data.frame("alpha"=rgamma(n=5000, shape=a, scale=1/b),
                         "distribution" =factor(rep("prior",5000),
                         levels=c("prior", "posterior")))
 p <- (ggplot(prioralpha, aes(x=alpha))
       + geom_histogram(aes(y=..density..),
                        colour="black", fill="white", bins=30)
       + geom_density(alpha=.6, fill="red", color=NA)
       + ggtitle(paste("Prior distribution on alpha: Gamma(", a,
                 ",", b, ")\n", sep=""))
       + theme_bw()
      )
 p


if(interactive()){
 # Gibbs sampler for Dirichlet Process Mixtures
 ##############################################

 MCMCsample <- DPMGibbsN(z, hyperG0, a, b, N=500, doPlot, nbclust_init, plotevery=100,
                         gg.add=list(theme_bw(),
                                 guides(shape=guide_legend(override.aes = list(fill="grey45")))),
                         diagVar=FALSE)

 plot_ConvDPM(MCMCsample, from=2)

 s <- summary(MCMCsample, burnin = 200, thin=2, posterior_approx=FALSE,
 lossFn = "MBinderN")

 F <- FmeasureC(pred=s$point_estim$c_est, ref=c)

 postalpha <- data.frame("alpha"=MCMCsample$alpha[50:500],
                         "distribution" = factor(rep("posterior",500-49),
                         levels=c("prior", "posterior")))
 p <- (ggplot(postalpha, aes(x=alpha))
       + geom_histogram(aes(y=..density..), binwidth=.1,
                        colour="black", fill="white")
       + geom_density(alpha=.2, fill="blue")
       + ggtitle("Posterior distribution of alpha\n")
       # Ignore NA values for mean
       # Overlay with transparent density plot
       + geom_vline(aes(xintercept=mean(alpha, na.rm=TRUE)),
                    color="red", linetype="dashed", size=1)
     )
 p

 p <- (ggplot(drop=FALSE, alpha=.6)
       + geom_density(aes(x=alpha, fill=distribution),
                      color=NA, alpha=.6,
                      data=prioralpha)
       #+ geom_density(aes(x=alpha, fill=distribution),
       #               color=NA, alpha=.6,
       #               data=postalpha)
       + ggtitle("Prior and posterior distributions of alpha\n")
       + scale_fill_discrete(drop=FALSE)
       + theme_bw()
       +xlim(0,10)
       +ylim(0, 1.3)
     )
 p

}

# k-means comparison
####################

 plot(x=z[1,], y=z[2,], col=kmeans(t(z), centers=4)$cluster,
      xlab = "d = 1", ylab= "d = 2", main="k-means with K=4 clusters")

 KM <- kmeans(t(z), centers=4)
 dataKM <- data.frame("X"=z[1,], "Y"=z[2,],
                    "Cluster"=as.character(KM$cluster))
 dataCenters <- data.frame("X"=KM$centers[,1],
                           "Y"=KM$centers[,2],
                           "Cluster"=rownames(KM$centers))

 p <- (ggplot(dataKM)
       + geom_point(aes(x=X, y=Y, col=Cluster))
       + geom_point(aes(x=X, y=Y, fill=Cluster, order=Cluster),
                    data=dataCenters, shape=22, size=5)
       + scale_colour_discrete(name="Cluster")
       + ggtitle("K-means with K=4 clusters\n"))
 p

Slice Sampling of the Dirichlet Process Mixture Model with a prior on alpha

Description

Slice Sampling of the Dirichlet Process Mixture Model with a prior on alpha

Usage

DPMGibbsN_parallel(
  Ncpus,
  type_connec,
  z,
  hyperG0,
  a = 1e-04,
  b = 1e-04,
  N,
  doPlot = TRUE,
  nbclust_init = 30,
  plotevery = N/10,
  diagVar = TRUE,
  use_variance_hyperprior = TRUE,
  verbose = TRUE,
  monitorfile = "",
  ...
)

Arguments

Ncpus

the number of processors available

type_connec

The type of connection between the processors. Supported cluster types are "SOCK", "FORK", "MPI", and "NWS". See also makeCluster.

z

data matrix d x n with d dimensions in rows and n observations in columns.

hyperG0

prior mixing distribution.

a

shape hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001.

b

scale hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001. If 0, then the concentration is fixed set to a.

N

number of MCMC iterations.

doPlot

logical flag indicating whether to plot MCMC iteration or not. Default to TRUE.

nbclust_init

number of clusters at initialization. Default to 30 (or less if there are less than 30 observations).

plotevery

an integer indicating the interval between plotted iterations when doPlot is TRUE.

diagVar

logical flag indicating whether the variance of each cluster is estimated as a diagonal matrix, or as a full matrix. Default is TRUE (diagonal variance).

use_variance_hyperprior

logical flag indicating whether a hyperprior is added for the variance parameter. Default is TRUE which decrease the impact of the variance prior on the posterior. FALSE is useful for using an informative prior.

verbose

logical flag indicating whether partition info is written in the console at each MCMC iteration.

monitorfile

a writable connections or a character string naming a file to write into, to monitor the progress of the analysis. Default is "" which is no monitoring. See Details.

...

additional arguments to be passed to plot_DPM. Only used if doPlot is TRUE.

Value

a object of class DPMclust with the following attributes:

mcmc_partitions:

a list of length N. Each element mcmc_partitions[n] is a vector of length n giving the partition of the n observations.

alpha:

a vector of length N. cost[j] is the cost associated to partition c[[j]]

listU_mu:

a list of length N containing the matrices of mean vectors for all the mixture components at each MCMC iteration

listU_Sigma:

a list of length N containing the arrays of covariances matrices for all the mixture components at each MCMC iteration

U_SS_list:

a list of length N containing the lists of sufficient statistics for all the mixture components at each MCMC iteration

weights_list:

a list of length N containing the logposterior values at each MCMC iterations

logposterior_list:

a list of length N containing the logposterior values at each MCMC iterations

data:

the data matrix d x n with d dimensions in rows and n observations in columns

nb_mcmcit:

the number of MCMC iterations

clust_distrib:

the parametric distribution of the mixture component - "gaussian"

hyperG0:

the prior on the cluster location

Author(s)

Boris Hejblum

See Also

DPMGibbsN

Examples

# Scaling up: ----
rm(list=ls())
#Number of data
n <- 2000
set.seed(1234)

# Sample data
d <- 3
nclust <- 5
m <- matrix(nrow=d, ncol=nclust, runif(d*nclust)*8)
# p: cluster probabilities
p <- runif(nclust)
p <- p/sum(p)

# Covariance matrix of the clusters
sdev <- array(dim=c(d, d, nclust))
for (j in 1:nclust){
    sdev[, ,j] <- matrix(NA, nrow=d, ncol=d)
    diag(sdev[, ,j]) <- abs(rnorm(n=d, mean=0.3, sd=0.1))
    sdev[, ,j][lower.tri(sdev[, ,j], diag = FALSE)] <- rnorm(n=d*(d-1)/2,
    mean=0, sd=0.05)
    sdev[, ,j][upper.tri(sdev[, ,j], diag = FALSE)] <- (sdev[, ,j][
                                                        lower.tri(sdev[, ,j], diag = FALSE)])
}
c <- rep(0,n)
z <- matrix(0, nrow=d, ncol=n)
for(k in 1:n){
    c[k] = which(rmultinom(n=1, size=1, prob=p)!=0)
    z[,k] <- m[, c[k]] + sdev[, , c[k]]%*%matrix(rnorm(d, mean = 0, sd = 1), nrow=d, ncol=1)
    #cat(k, "/", n, " observations simulated\n", sep="")
}

# hyperprior on the Scale parameter of DPM
a <- 0.001
b <- 0.001

# Number of iterations
N <- 25

# do some plots
doPlot <- TRUE

# Set parameters of G0
hyperG0 <- list()
hyperG0[["mu"]] <- rep(0, d)
hyperG0[["kappa"]] <- 0.01
hyperG0[["nu"]] <- d + 2
hyperG0[["lambda"]] <- diag(d)/10


nbclust_init <- 30

if(interactive()){
 library(doParallel)
 MCMCsample <- DPMGibbsN_parallel(Ncpus=2, type_connec="FORK", z, hyperG0, a, b, 
                                  N=1000, doPlot=FALSE, nbclust_init=30, 
                                  plotevery=100, gg.add=list(ggplot2::theme_bw(),
                                  ggplot2::guides(shape = 
                                    ggplot2::guide_legend(override.aes = list(fill="grey45")))),
                                  diagVar=FALSE)
}

Slice Sampling of Dirichlet Process Mixture of Gaussian distributions

Description

Slice Sampling of Dirichlet Process Mixture of Gaussian distributions

Usage

DPMGibbsN_SeqPrior(
  z,
  prior_inform,
  hyperG0,
  N,
  nbclust_init,
  add.vagueprior = TRUE,
  weightnoninfo = NULL,
  doPlot = TRUE,
  plotevery = N/10,
  diagVar = TRUE,
  verbose = TRUE,
  ...
)

Arguments

z

data matrix d x n with d dimensions in rows and n observations in columns.

prior_inform

an informative prior such as the approximation computed by summary.DPMMclust.

hyperG0

a non informative prior component for the mixing distribution. Only used if add.vagueprior is TRUE.

N

number of MCMC iterations.

nbclust_init

number of clusters at initialization. Default to 30 (or less if there are less than 30 observations).

add.vagueprior

logical flag indicating whether a non informative component should be added to the informative prior. Default is TRUE.

weightnoninfo

a real between 0 and 1 giving the weights of the non informative component in the prior.

doPlot

logical flag indicating whether to plot MCMC iteration or not. Default to TRUE.

plotevery

an integer indicating the interval between plotted iterations when doPlot is TRUE.

diagVar

logical flag indicating whether the variance of each cluster is estimated as a diagonal matrix, or as a full matrix. Default is TRUE (diagonal variance).

verbose

logical flag indicating whether partition info is written in the console at each MCMC iteration.

...

additional arguments to be passed to plot_DPM. Only used if doPlot is TRUE.

Value

a object of class DPMclust with the following attributes:

mcmc_partitions:

a list of length N. Each element mcmc_partitions[n] is a vector of length n giving the partition of the n observations.

alpha:

a vector of length N. cost[j] is the cost associated to partition c[[j]]

listU_mu:

a list of length N containing the matrices of mean vectors for all the mixture components at each MCMC iteration

listU_Sigma:

a list of length N containing the arrays of covariances matrices for all the mixture components at each MCMC iteration

U_SS_list:

a list of length N containing the lists of sufficient statistics for all the mixture components at each MCMC iteration

weights_list:
logposterior_list:

a list of length N containing the logposterior values at each MCMC iterations

data:

the data matrix d x n with d dimensions in rows and n observations in columns.

nb_mcmcit:

the number of MCMC iterations

clust_distrib:

the parametric distribution of the mixture component - "gaussian"

hyperG0:

the prior on the cluster location

Author(s)

Boris Hejblum, Chariff Alkhassim

References

Hejblum BP, Alkhassim C, Gottardo R, Caron F and Thiebaut R (2019) Sequential Dirichlet Process Mixtures of Multivariate Skew t-distributions for Model-based Clustering of Flow Cytometry Data. The Annals of Applied Statistics, 13(1): 638-660. <doi: 10.1214/18-AOAS1209> <arXiv: 1702.04407> https://arxiv.org/abs/1702.04407 doi:10.1214/18-AOAS1209

See Also

postProcess.DPMMclust DPMGibbsN

Examples

rm(list=ls())
library(NPflow)
#Number of data
n <- 1500
# Sample data
#m <- matrix(nrow=2, ncol=4, c(-1, 1, 1.5, 2, 2, -2, 0.5, -2))
m <- matrix(nrow=2, ncol=4, c(-.8, .7, .5, .7, .5, -.7, -.5, -.7))
p <- c(0.2, 0.1, 0.4, 0.3) # frequence des clusters

sdev <- array(dim=c(2,2,4))
sdev[, ,1] <- matrix(nrow=2, ncol=2, c(0.3, 0, 0, 0.3))
sdev[, ,2] <- matrix(nrow=2, ncol=2, c(0.1, 0, 0, 0.3))
sdev[, ,3] <- matrix(nrow=2, ncol=2, c(0.3, 0.15, 0.15, 0.3))
sdev[, ,4] <- .3*diag(2)
c <- rep(0,n)
z <- matrix(0, nrow=2, ncol=n)
for(k in 1:n){
 c[k] = which(rmultinom(n=1, size=1, prob=p)!=0)
 z[,k] <- m[, c[k]] + sdev[, , c[k]]%*%matrix(rnorm(2, mean = 0, sd = 1), nrow=2, ncol=1)
 #cat(k, "/", n, " observations simulated\n", sep="")
}

d<-2
# Set parameters of G0
hyperG0 <- list()
hyperG0[["mu"]] <- rep(0,d)
hyperG0[["kappa"]] <- 0.001
hyperG0[["nu"]] <- d+2
hyperG0[["lambda"]] <- diag(d)/10

# hyperprior on the Scale parameter of DPM
a <- 0.0001
b <- 0.0001

# Number of iterations
N <- 30

# do some plots
doPlot <- TRUE
nbclust_init <- 20



## Data
########
library(ggplot2)
p <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,]), aes(x=X, y=Y))
      + geom_point()
      + ggtitle("Toy example Data"))
p


if(interactive()){
# Gibbs sampler for Dirichlet Process Mixtures
##############################################

MCMCsample <- DPMGibbsN(z, hyperG0, a, b, N=1500, doPlot, nbclust_init, plotevery=200,
                        gg.add=list(theme_bw(),
                                 guides(shape=guide_legend(override.aes = list(fill="grey45")))),
                        diagVar=FALSE)

s <- summary(MCMCsample, posterior_approx=TRUE, burnin = 1000, thin=5)
F1 <- FmeasureC(pred=s$point_estim$c_est, ref=c)
F1


MCMCsample2 <- DPMGibbsN_SeqPrior(z, prior_inform=s$param_posterior,
                                  hyperG0, N=1500,
                                  add.vagueprior = TRUE,
                                  doPlot=TRUE, plotevery=100,
                                  nbclust_init=nbclust_init,
                                  gg.add=list(theme_bw(),
                                 guides(shape=guide_legend(override.aes = list(fill="grey45")))),
                                  diagVar=FALSE)


s2 <- summary(MCMCsample2, burnin = 500, thin=5)
F2 <- FmeasureC(pred=s2$point_estim$c_est, ref=c)
F2
}

Slice Sampling of Dirichlet Process Mixture of skew normal distributions

Description

Slice Sampling of Dirichlet Process Mixture of skew normal distributions

Usage

DPMGibbsSkewN(
  z,
  hyperG0,
  a = 1e-04,
  b = 1e-04,
  N,
  doPlot = TRUE,
  nbclust_init = 30,
  plotevery = N/10,
  diagVar = TRUE,
  use_variance_hyperprior = TRUE,
  verbose = TRUE,
  ...
)

Arguments

z

data matrix d x n with d dimensions in rows and n observations in columns.

hyperG0

prior mixing distribution.

a

shape hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001.

b

scale hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001. If 0, then the concentration is fixed set to a.

N

number of MCMC iterations.

doPlot

logical flag indicating whether to plot MCMC iteration or not. Default to TRUE.

nbclust_init

number of clusters at initialization. Default to 30 (or less if there are less than 30 observations).

plotevery

an integer indicating the interval between plotted iterations when doPlot is TRUE.

diagVar

logical flag indicating whether the variance of a cluster is a diagonal matrix. Default is FALSE (full matrix).

use_variance_hyperprior

logical flag indicating whether a hyperprior is added for the variance parameter. Default is TRUE which decrease the impact of the variance prior on the posterior. FALSE is useful for using an informative prior.

verbose

logical flag indicating whether partition info is written in the console at each MCMC iteration.

...

additional arguments to be passed to plot_DPMsn. Only used if doPlot is TRUE.

Value

a object of class DPMclust with the following attributes:

mcmc_partitions:

a list of length N. Each element mcmc_partitions[n] is a vector of length n giving the partition of the n observations.

alpha:

a vector of length N. cost[j] is the cost associated to partition c[[j]]

U_SS_list:

a list of length N containing the lists of sufficient statistics for all the mixture components at each MCMC iteration

weights_list:
logposterior_list:

a list of length N containing the logposterior values at each MCMC iterations

data:

the data matrix d x n with d dimensions in rows and n observations in columns

nb_mcmcit:

the number of MCMC iterations

clust_distrib:

the parametric distribution of the mixture component - "skewnorm"

hyperG0:

the prior on the cluster location

Author(s)

Boris Hejblum

References

Hejblum BP, Alkhassim C, Gottardo R, Caron F and Thiebaut R (2019) Sequential Dirichlet Process Mixtures of Multivariate Skew t-distributions for Model-based Clustering of Flow Cytometry Data. The Annals of Applied Statistics, 13(1): 638-660. <doi: 10.1214/18-AOAS1209> <arXiv: 1702.04407> https://arxiv.org/abs/1702.04407 doi:10.1214/18-AOAS1209

Examples

rm(list=ls())

#Number of data
n <- 1000
set.seed(123)

d <- 2
ncl <- 4

# Sample data

sdev <- array(dim=c(d,d,ncl))

#xi <- matrix(nrow=d, ncol=ncl, c(-1.5, 1, 1.5, 1, 1.5, -2, -2, -2))
xi <- matrix(nrow=d, ncol=ncl, c(-0.5, 0, 0.5, 0, 0.5, -1, -1, 1))
##xi <- matrix(nrow=d, ncol=ncl, c(-0.3, 0, 0.5, 0.5, 0.5, -1.2, -1, 1))
psi <- matrix(nrow=d, ncol=4, c(0.4, -0.6, 0.8, 0, 0.3, -0.7, -0.3, -1.2))
p <- c(0.2, 0.1, 0.4, 0.3) # frequence des clusters
sdev[, ,1] <- matrix(nrow=d, ncol=d, c(0.3, 0, 0, 0.3))
sdev[, ,2] <- matrix(nrow=d, ncol=d, c(0.1, 0, 0, 0.3))
sdev[, ,3] <- matrix(nrow=d, ncol=d, c(0.3, 0.15, 0.15, 0.3))
sdev[, ,4] <- .3*diag(2)


c <- rep(0,n)
z <- matrix(0, nrow=d, ncol=n)
for(k in 1:n){
 c[k] = which(rmultinom(n=1, size=1, prob=p)!=0)
 z[,k] <- xi[, c[k]] + psi[, c[k]]*abs(rnorm(1)) + sdev[, , c[k]]%*%matrix(rnorm(d, mean = 0,
                                                                       sd = 1), nrow=d, ncol=1)
 #cat(k, "/", n, " observations simulated\n", sep="")
}

# Set parameters of G0
hyperG0 <- list()
hyperG0[["b_xi"]] <- rep(0,d)
hyperG0[["b_psi"]] <- rep(0,d)
hyperG0[["kappa"]] <- 0.0001
hyperG0[["D_xi"]] <- 100
hyperG0[["D_psi"]] <- 100
hyperG0[["nu"]] <- d + 1
hyperG0[["lambda"]] <- diag(d)

 # hyperprior on the Scale parameter of DPM
 a <- 0.0001
 b <- 0.0001

 # do some plots
 doPlot <- TRUE
 nbclust_init <- 30



 ## Data
 ########
 library(ggplot2)
 p <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,]), aes(x=X, y=Y))
       + geom_point()
       + ggtitle("Simple example in 2d data")
       +xlab("D1")
       +ylab("D2")
       +theme_bw())
 p

 c2plot <- factor(c)
 levels(c2plot) <- c("3", "2", "4", "1")
 pp <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,], "Cluster"=as.character(c2plot)))
       + geom_point(aes(x=X, y=Y, colour=Cluster, fill=Cluster))
       + ggtitle("Slightly overlapping skew-normal simulation\n")
       + xlab("D1")
       + ylab("D2")
       + theme_bw()
       + scale_colour_discrete(guide=guide_legend(override.aes = list(size = 6, shape=22))))
 pp


 ## alpha priors plots
 #####################
 prioralpha <- data.frame("alpha"=rgamma(n=5000, shape=a, scale=1/b),
                         "distribution" =factor(rep("prior",5000),
                         levels=c("prior", "posterior")))
 p <- (ggplot(prioralpha, aes(x=alpha))
       + geom_histogram(aes(y=..density..),
                        colour="black", fill="white")
       + geom_density(alpha=.2, fill="red")
       + ggtitle(paste("Prior distribution on alpha: Gamma(", a,
                 ",", b, ")\n", sep=""))
      )
 p


if(interactive()){
 # Gibbs sampler for Dirichlet Process Mixtures
 ##############################################

 MCMCsample_sn <- DPMGibbsSkewN(z, hyperG0, a, b, N=2500,
                                doPlot, nbclust_init, plotevery=200,
                                gg.add=list(theme_bw(),
                                 guides(shape=guide_legend(override.aes = list(fill="grey45")))),
                               diagVar=FALSE)

 s <- summary(MCMCsample_sn, burnin = 2000, thin=10)
 #cluster_est_binder(MCMCsample_sn$mcmc_partitions[1000:1500])
 print(s)
 plot(s)
 #plot_ConvDPM(MCMCsample_sn, from=2)






 # k-means

 plot(x=z[1,], y=z[2,], col=kmeans(t(z), centers=4)$cluster,
      xlab = "d = 1", ylab= "d = 2", main="k-means with K=4 clusters")

 KM <- kmeans(t(z), centers=4)
 KMclust <- factor(KM$cluster)
 levels(KMclust) <- c("2", "4", "1", "3")
 dataKM <- data.frame("X"=z[1,], "Y"=z[2,],
                    "Cluster"=as.character(KMclust))
 dataCenters <- data.frame("X"=KM$centers[,1],
                           "Y"=KM$centers[,2],
                           "Cluster"=c("2", "4", "1", "3"))


 p <- (ggplot(dataKM)
       + geom_point(aes(x=X, y=Y, col=Cluster))
       + geom_point(aes(x=X, y=Y, fill=Cluster, order=Cluster),
                    data=dataCenters, shape=22, size=5)
       + scale_colour_discrete(name="Cluster",
                               guide=guide_legend(override.aes=list(size=6, shape=22)))
       + ggtitle("K-means with K=4 clusters\n")
       + theme_bw()
 )
 p

 postalpha <- data.frame("alpha"=MCMCsample_sn$alpha[501:1000],
                         "distribution" = factor(rep("posterior",1000-500),
                         levels=c("prior", "posterior")))

 postK <- data.frame("K"=sapply(lapply(postalpha$alpha, "["),
                                function(x){sum(x/(x+0:(1000-1)))}))

 p <- (ggplot(postalpha, aes(x=alpha))
       + geom_histogram(aes(y=..density..), binwidth=.1,
                        colour="black", fill="white")
       + geom_density(alpha=.2, fill="blue")
       + ggtitle("Posterior distribution of alpha\n")
       # Ignore NA values for mean
       # Overlay with transparent density plot
       + geom_vline(aes(xintercept=mean(alpha, na.rm=T)),
                    color="red", linetype="dashed", size=1)
     )
 p

 p <- (ggplot(postK, aes(x=K))
       + geom_histogram(aes(y=..density..),
                        colour="black", fill="white")
       + geom_density(alpha=.2, fill="blue")
       + ggtitle("Posterior distribution of predicted K\n")
       # Ignore NA values for mean
       # Overlay with transparent density plot
       + geom_vline(aes(xintercept=mean(K, na.rm=T)),
                    color="red", linetype="dashed", size=1)
       #+ scale_x_continuous(breaks=c(0:6)*2, minor_breaks=c(0:6)*2+1)
       + scale_x_continuous(breaks=c(1:12))
     )
 p

 p <- (ggplot(drop=FALSE, alpha=.6)
       + geom_density(aes(x=alpha, fill=distribution),
                      color=NA, alpha=.6,
                      data=postalpha)
       + geom_density(aes(x=alpha, fill=distribution),
                      color=NA, alpha=.6,
                      data=prioralpha)
       + ggtitle("Prior and posterior distributions of alpha\n")
       + scale_fill_discrete(drop=FALSE)
       + theme_bw()
       + xlim(0,100)
     )
 p

#Skew Normal
n=100000
xi <- 0
d <- 0.995
alpha <- d/sqrt(1-d^2)
z <- rtruncnorm(n,a=0, b=Inf)
e <- rnorm(n, mean = 0, sd = 1)
x <- d*z + sqrt(1-d^2)*e
o <- 1
y <- xi+o*x
nu=1.3
w <- rgamma(n,scale=nu/2, shape=nu/2)
yy <- xi+o*x/w
snd <- data.frame("Y"=y,"YY"=yy)
p <- (ggplot(snd)+geom_density(aes(x=Y), fill="blue", alpha=.2)
     + theme_bw()
     + ylab("Density")
     + ggtitle("Y~SN(0,1,10)\n")
     + xlim(-1,6)
     + ylim(0,0.8)
     )
p

p <- (ggplot(snd)+geom_density(aes(x=YY), fill="blue", alpha=.2)
     + theme_bw()
     + ylab("Density")
     + ggtitle("Y~ST(0,1,10,1.3)\n")
     + xlim(-2,40)
     + ylim(0,0.8)
     )
p

p <- (ggplot(snd)
     + geom_density(aes(x=Y, fill="blue"), alpha=.2)
     + geom_density(aes(x=YY, fill="red"), alpha=.2)
     + theme_bw()
     +theme(legend.text = element_text(size = 13), legend.position="bottom")
     + ylab("Density")
     + xlim(-2,40)
     + ylim(0,0.8)
     + scale_fill_manual(name="", labels=c("Y~SN(0,1,10)       ", "Y~ST(0,1,10,1.3)"),
     guide="legend", values=c("blue", "red"))
     )
p

#Variations
n=100000
xi <- -1
d <- 0.995
alpha <- d/sqrt(1-d^2)
z <- rtruncnorm(n,a=0, b=Inf)
e <- rnorm(n, mean = 0, sd = 1)
x <- d*z + sqrt(1-d^2)*e
snd <- data.frame("X"=x)
p <- (ggplot(snd)+geom_density(aes(x=X), fill="blue", alpha=.2)
     + theme_bw()
     + ylab("Density")
     + ggtitle("X~SN(10)\n")
     + xlim(-1.5,4)
     + ylim(0,1.6)
     )
p

o <- 0.5
y <- xi+o*x
snd <- data.frame("Y"=y)
p <- (ggplot(snd)+geom_density(aes(x=Y), fill="blue", alpha=.2)
     + theme_bw()
     + ylab("Density")
     + ggtitle("Y~SN(-1,1,10)\n")
     + xlim(-1.5,4)
     + ylim(0,1.6)
     )
p




#Simple toy example
###################

n <- 500
set.seed(12345)


d <- 2
ncl <- 4

# Sample data

sdev <- array(dim=c(d,d,ncl))

xi <- matrix(nrow=d, ncol=ncl, c(-1.5, 1, 1.5, 1, 1.5, -2, -2, -2))
psi <- matrix(nrow=d, ncol=4, c(0.4, -0.6, 0.8, 0, 0.3, -0.7, -0.3, -1.2))
p <- c(0.2, 0.1, 0.4, 0.3) # frequence des clusters
sdev[, ,1] <- matrix(nrow=d, ncol=d, c(0.3, 0, 0, 0.3))
sdev[, ,2] <- matrix(nrow=d, ncol=d, c(0.1, 0, 0, 0.3))
sdev[, ,3] <- matrix(nrow=d, ncol=d, c(0.3, 0.15, 0.15, 0.3))
sdev[, ,4] <- .3*diag(2)

#' # Set parameters of G0
hyperG0 <- list()
hyperG0[["b_xi"]] <- rep(0,d)
hyperG0[["b_psi"]] <- rep(0,d)
hyperG0[["kappa"]] <- 0.0001
hyperG0[["D_xi"]] <- 100
hyperG0[["D_psi"]] <- 100
hyperG0[["nu"]] <- d + 1
hyperG0[["lambda"]] <- diag(d)


c <- rep(0,n)
z <- matrix(0, nrow=d, ncol=n)
for(k in 1:n){
 c[k] = which(rmultinom(n=1, size=1, prob=p)!=0)
 z[,k] <- xi[, c[k]] + psi[, c[k]]*abs(rnorm(1)) + sdev[, , c[k]]%*%matrix(rnorm(d, mean = 0,
                                                                        sd = 1), nrow=d, ncol=1)
 cat(k, "/", n, " observations simulated\n", sep="")
}

 MCMCsample_sn_sep <- DPMGibbsSkewN(z, hyperG0, a, b, N=600,
                                    doPlot, nbclust_init, plotevery=100,
                                    gg.add=list(theme_bw(),
                               guides(shape=guide_legend(override.aes = list(fill="grey45")))),
                                    diagVar=TRUE)

 s <- summary(MCMCsample_sn, burnin = 400)

}

Parallel Implementation of Slice Sampling of Dirichlet Process Mixture of skew normal distributions

Description

If the monitorfile argument is a character string naming a file to write into, in the case of a new file that does not exist yet, such a new file will be created. A line is written at each MCMC iteration.

Usage

DPMGibbsSkewN_parallel(
  Ncpus,
  type_connec,
  z,
  hyperG0,
  a = 1e-04,
  b = 1e-04,
  N,
  doPlot = FALSE,
  nbclust_init = 30,
  plotevery = N/10,
  diagVar = TRUE,
  use_variance_hyperprior = TRUE,
  verbose = FALSE,
  monitorfile = "",
  ...
)

Arguments

Ncpus

the number of processors available

type_connec

The type of connection between the processors. Supported cluster types are "SOCK", "FORK", "MPI", and "NWS". See also makeCluster.

z

data matrix d x n with d dimensions in rows and n observations in columns.

hyperG0

prior mixing distribution.

a

shape hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001.

b

scale hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001. If 0, then the concentration is fixed set to a.

N

number of MCMC iterations.

doPlot

logical flag indicating whether to plot MCMC iteration or not. Default to TRUE.

nbclust_init

number of clusters at initialization. Default to 30 (or less if there are less than 30 observations).

plotevery

an integer indicating the interval between plotted iterations when doPlot is TRUE.

diagVar

logical flag indicating whether the variance of each cluster is estimated as a diagonal matrix, or as a full matrix. Default is TRUE (diagonal variance).

use_variance_hyperprior

logical flag indicating whether a hyperprior is added for the variance parameter. Default is TRUE which decrease the impact of the variance prior on the posterior. FALSE is useful for using an informative prior.

verbose

logical flag indicating whether partition info is written in the console at each MCMC iteration.

monitorfile

a writable connections or a character string naming a file to write into, to monitor the progress of the analysis. Default is "" which is no monitoring. See Details.

...

additional arguments to be passed to plot_DPM. Only used if doPlot is TRUE.

Value

a object of class DPMclust with the following attributes:

mcmc_partitions:

a list of length N. Each element mcmc_partitions[n] is a vector of length n giving the partition of the n observations.

alpha:

a vector of length N. cost[j] is the cost associated to partition c[[j]]

U_SS_list:

a list of length N containing the lists of sufficient statistics for all the mixture components at each MCMC iteration

weights_list:
logposterior_list:

a list of length N containing the logposterior values at each MCMC iterations

data:

the data matrix d x n with d dimensions in rows and n observations in columns

nb_mcmcit:

the number of MCMC iterations

clust_distrib:

the parametric distribution of the mixture component - "skewnorm"

hyperG0:

the prior on the cluster location

Author(s)

Boris Hejblum

References

Hejblum BP, Alkhassim C, Gottardo R, Caron F and Thiebaut R (2019) Sequential Dirichlet Process Mixtures of Multivariate Skew t-distributions for Model-based Clustering of Flow Cytometry Data. The Annals of Applied Statistics, 13(1): 638-660. <doi: 10.1214/18-AOAS1209> <arXiv: 1702.04407> https://arxiv.org/abs/1702.04407 doi:10.1214/18-AOAS1209

Examples

rm(list=ls())
#Number of data
n <- 2000
set.seed(1234)

d <- 4
ncl <- 5

# Sample data

sdev <- array(dim=c(d,d,ncl))

xi <- matrix(nrow=d, ncol=ncl, c(runif(n=d*ncl,min=0,max=3)))
psi <- matrix(nrow=d, ncol=ncl, c(runif(n=d*ncl,min=-1,max=1)))
p <- runif(n=ncl)
p <- p/sum(p)
sdev0 <- diag(runif(n=d, min=0.05, max=0.6))
for (j in 1:ncl){
     sdev[, ,j] <- invwishrnd(n = d+2, lambda = sdev0)
}


c <- rep(0,n)
z <- matrix(0, nrow=d, ncol=n)
for(k in 1:n){
 c[k] = which(rmultinom(n=1, size=1, prob=p)!=0)
 z[,k] <- xi[, c[k]] + psi[, c[k]]*abs(rnorm(1)) + sdev[, , c[k]]%*%matrix(rnorm(d, mean = 0,
                                                                        sd = 1), nrow=d, ncol=1)
 #cat(k, "/", n, " observations simulated\n", sep="")
}

# Set parameters of G0
hyperG0 <- list()
hyperG0[["b_xi"]] <- rep(0,d)
hyperG0[["b_psi"]] <- rep(0,d)
hyperG0[["kappa"]] <- 0.001
hyperG0[["D_xi"]] <- 100
hyperG0[["D_psi"]] <- 100
hyperG0[["nu"]] <- d + 1
hyperG0[["lambda"]] <- diag(d)/10

 # hyperprior on the Scale parameter of DPM
 a <- 0.0001
 b <- 0.0001

 # do some plots
 doPlot <- TRUE
 nbclust_init <- 30


 z <- z*200
 ## Data
 ########
library(ggplot2)
 p <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,]), aes(x=X, y=Y))
       + geom_point()
       + ggtitle("Simple example in 2d data")
       +xlab("D1")
       +ylab("D2")
       +theme_bw())
 p


 ## alpha priors plots
 #####################
 prioralpha <- data.frame("alpha"=rgamma(n=5000, shape=a, scale=1/b),
                         "distribution" =factor(rep("prior",5000),
                         levels=c("prior", "posterior")))
 p <- (ggplot(prioralpha, aes(x=alpha))
       + geom_histogram(aes(y=..density..),
                        colour="black", fill="white")
       + geom_density(alpha=.2, fill="red")
       + ggtitle(paste("Prior distribution on alpha: Gamma(", a,
                 ",", b, ")\n", sep=""))
      )
 p



 # Gibbs sampler for Dirichlet Process Mixtures
 ##############################################
 if(interactive()){
  MCMCsample_sn_par <- DPMGibbsSkewN_parallel(Ncpus=parallel::detectCores()-1,
                                              type_connec="SOCK", z, hyperG0,
                                              a, b, N=5000, doPlot, nbclust_init,
                                              plotevery=25, gg.add=list(theme_bw(),
                                guides(shape=guide_legend(override.aes = list(fill="grey45")))))
  plot_ConvDPM(MCMCsample_sn_par, from=2)
 }

Slice Sampling of Dirichlet Process Mixture of skew Student's t-distributions

Description

Slice Sampling of Dirichlet Process Mixture of skew Student's t-distributions

Usage

DPMGibbsSkewT(
  z,
  hyperG0,
  a = 1e-04,
  b = 1e-04,
  N,
  doPlot = TRUE,
  nbclust_init = 30,
  plotevery = N/10,
  diagVar = TRUE,
  use_variance_hyperprior = TRUE,
  verbose = TRUE,
  ...
)

Arguments

z

data matrix d x n with d dimensions in rows and n observations in columns.

hyperG0

parameters of the prior mixing distribution in a list with the following named components:

  • "b_xi": a vector of length d with the mean location prior parameter. Can be set as the empirical mean of the data in an Empirical Bayes fashion.

  • "b_psi": a vector of length d with the skewness location prior parameter. Can be set as 0 a priori.

  • "kappa": a strictly positive number part of the inverse-Wishart component of the prior on the variance matrix. Can be set as very small (e.g. 0.001) a priori.

  • "D_xi": hyperprior controlling the information in ξ\xi (the larger the less information is carried). 100 is a reasonable value, based on Fruhwirth-Schnatter et al., Biostatistics, 2010.

  • "D_psi": hyperprior controlling the information in ψ\psi (the larger the less information is carried). 100 is a reasonable value, based on Fruhwirth-Schnatter et al., Biostatistics, 2010

  • "nu": a prior number on the degrees of freedom of the tt component that must be strictly greater than d. Can be set as d + 1 for instance.

  • "lambda": a d x d symmetric definitive positive matrix part of the inverse-Wishart component of the prior on the variance matrix. Can be set as the diagonal of empirical variance of the data in an Empircal Bayes fashion divided by a factor 3 according to Fruhwirth-Schnatter et al., Biostatistics, 2010.

a

shape hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001.

b

scale hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001. If 0, then the concentration is fixed set to a.

N

number of MCMC iterations.

doPlot

logical flag indicating whether to plot MCMC iteration or not. Default to TRUE.

nbclust_init

number of clusters at initialization. Default to 30 (or less if there are less than 30 observations).

plotevery

an integer indicating the interval between plotted iterations when doPlot is TRUE.

diagVar

logical flag indicating whether the variance of each cluster is estimated as a diagonal matrix, or as a full matrix. Default is TRUE (diagonal variance).

use_variance_hyperprior

logical flag indicating whether a hyperprior is added for the variance parameter. Default is TRUE which decrease the impact of the variance prior on the posterior. FALSE is useful for using an informative prior.

verbose

logical flag indicating whether partition info is written in the console at each MCMC iteration.

...

additional arguments to be passed to plot_DPMst. Only used if doPlot is TRUE.

Value

a object of class DPMclust with the following attributes:

mcmc_partitions:

a list of length N. Each element mcmc_partitions[n] is a vector of length n giving the partition of the n observations.

alpha:

a vector of length N. cost[j] is the cost associated to partition c[[j]]

U_SS_list:

a list of length N containing the lists of sufficient statistics for all the mixture components at each MCMC iteration

weights_list:

a list of length N containing the weights of each mixture component for each MCMC iterations

logposterior_list:

a list of length N containing the logposterior values at each MCMC iterations

data:

the data matrix d x n with d dimensions in rows and n observations in columns

nb_mcmcit:

the number of MCMC iterations

clust_distrib:

the parametric distribution of the mixture component - "skewt"

hyperG0:

the prior on the cluster location

Author(s)

Boris Hejblum

References

Hejblum BP, Alkhassim C, Gottardo R, Caron F and Thiebaut R (2019) Sequential Dirichlet Process Mixtures of Multivariate Skew t-distributions for Model-based Clustering of Flow Cytometry Data. The Annals of Applied Statistics, 13(1): 638-660. <doi: 10.1214/18-AOAS1209> <arXiv: 1702.04407> https://arxiv.org/abs/1702.04407 doi:10.1214/18-AOAS1209

Fruhwirth-Schnatter S, Pyne S, Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions, Biostatistics, 2010.

Examples

rm(list=ls())

#Number of data
n <- 2000
set.seed(4321)


d <- 2
ncl <- 4

# Sample data
library(truncnorm)

sdev <- array(dim=c(d,d,ncl))

#xi <- matrix(nrow=d, ncol=ncl, c(-1.5, 1.5, 1.5, 1.5, 2, -2.5, -2.5, -3))
#xi <- matrix(nrow=d, ncol=ncl, c(-0.5, 0, 0.5, 0, 0.5, -1, -1, 1))
xi <- matrix(nrow=d, ncol=ncl, c(-0.2, 0.5, 2.4, 0.4, 0.6, -1.3, -0.9, -2.7))
psi <- matrix(nrow=d, ncol=4, c(0.3, -0.7, -0.8, 0, 0.3, -0.7, 0.2, 0.9))
nu <- c(100,25,8,5)
p <- c(0.15, 0.05, 0.5, 0.3) # frequence des clusters
sdev[, ,1] <- matrix(nrow=d, ncol=d, c(0.3, 0, 0, 0.3))
sdev[, ,2] <- matrix(nrow=d, ncol=d, c(0.1, 0, 0, 0.3))
sdev[, ,3] <- matrix(nrow=d, ncol=d, c(0.3, 0.15, 0.15, 0.3))
sdev[, ,4] <- .3*diag(2)


c <- rep(0,n)
w <- rep(1,n)
z <- matrix(0, nrow=d, ncol=n)
for(k in 1:n){
 c[k] = which(rmultinom(n=1, size=1, prob=p)!=0)
 w[k] <- rgamma(1, shape=nu[c[k]]/2, rate=nu[c[k]]/2)
 z[,k] <- xi[, c[k]] + psi[, c[k]]*rtruncnorm(n=1, a=0, b=Inf, mean=0, sd=1/sqrt(w[k])) +
                (sdev[, , c[k]]/sqrt(w[k]))%*%matrix(rnorm(d, mean = 0, sd = 1), nrow=d, ncol=1)
 #cat(k, "/", n, " observations simulated\n", sep="")
}

# Set parameters of G0
hyperG0 <- list()
hyperG0[["b_xi"]] <- rowMeans(z)
hyperG0[["b_psi"]] <- rep(0,d)
hyperG0[["kappa"]] <- 0.001
hyperG0[["D_xi"]] <- 100
hyperG0[["D_psi"]] <- 100
hyperG0[["nu"]] <- d+1
hyperG0[["lambda"]] <- diag(apply(z,MARGIN=1, FUN=var))/3

 # hyperprior on the Scale parameter of DPM
 a <- 0.0001
 b <- 0.0001



 ## Data
 ########
 library(ggplot2)
 p <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,]), aes(x=X, y=Y))
       + geom_point()
       #+ ggtitle("Simple example in 2d data")
       +xlab("D1")
       +ylab("D2")
       +theme_bw())
 p #pdf(height=8.5, width=8.5)

 c2plot <- factor(c)
 levels(c2plot) <- c("4", "1", "3", "2")
 pp <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,], "Cluster"=as.character(c2plot)))
       + geom_point(aes(x=X, y=Y, colour=Cluster, fill=Cluster))
       #+ ggtitle("Slightly overlapping skew-normal simulation\n")
       + xlab("D1")
       + ylab("D2")
       + theme_bw()
       + scale_colour_discrete(guide=guide_legend(override.aes = list(size = 6, shape=22))))
 pp #pdf(height=7, width=7.5)


 ## alpha priors plots
 #####################
 prioralpha <- data.frame("alpha"=rgamma(n=5000, shape=a, scale=1/b),
                         "distribution" =factor(rep("prior",5000),
                         levels=c("prior", "posterior")))
 p <- (ggplot(prioralpha, aes(x=alpha))
       + geom_histogram(aes(y=..density..),
                        colour="black", fill="white")
       + geom_density(alpha=.2, fill="red")
       + ggtitle(paste("Prior distribution on alpha: Gamma(", a,
                 ",", b, ")\n", sep=""))
      )
 p



if(interactive()){
 # Gibbs sampler for Dirichlet Process Mixtures
 ##############################################
 MCMCsample_st <- DPMGibbsSkewT(z, hyperG0, a, b, N=1500,
                                doPlot=TRUE, nbclust_init=30, plotevery=100,
                               diagVar=FALSE)
 s <- summary(MCMCsample_st, burnin = 1000, thin=10, lossFn = "Binder")
 print(s)
 plot(s, hm=TRUE) #pdf(height=8.5, width=10.5) #png(height=700, width=720)
 plot_ConvDPM(MCMCsample_st, from=2)
 #cluster_est_binder(MCMCsample_st$mcmc_partitions[900:1000])
}

Slice Sampling of Dirichlet Process Mixture of skew Student's t-distributions

Description

Slice Sampling of Dirichlet Process Mixture of skew Student's t-distributions

Usage

DPMGibbsSkewT_parallel(
  Ncpus,
  type_connec,
  z,
  hyperG0,
  a = 1e-04,
  b = 1e-04,
  N,
  doPlot = FALSE,
  nbclust_init = 30,
  plotevery = N/10,
  diagVar = TRUE,
  use_variance_hyperprior = TRUE,
  verbose = FALSE,
  monitorfile = "",
  ...
)

Arguments

Ncpus

the number of processors available

type_connec

The type of connection between the processors. Supported cluster types are "PSOCK", "FORK", "SOCK", "MPI", and "NWS". See also makeCluster.

z

data matrix d x n with d dimensions in rows and n observations in columns.

hyperG0

prior mixing distribution.

a

shape hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001.

b

scale hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001. If 0, then the concentration is fixed set to a.

N

number of MCMC iterations.

doPlot

logical flag indicating whether to plot MCMC iteration or not. Default to TRUE.

nbclust_init

number of clusters at initialization. Default to 30 (or less if there are less than 30 observations).

plotevery

an integer indicating the interval between plotted iterations when doPlot is TRUE.

diagVar

logical flag indicating whether the variance of each cluster is estimated as a diagonal matrix, or as a full matrix. Default is TRUE (diagonal variance).

use_variance_hyperprior

logical flag indicating whether a hyperprior is added for the variance parameter. Default is TRUE which decrease the impact of the variance prior on the posterior. FALSE is useful for using an informative prior.

verbose

logical flag indicating whether partition info is written in the console at each MCMC iteration.

monitorfile

a writable connections or a character string naming a file to write into, to monitor the progress of the analysis. Default is "" which is no monitoring. See Details.

...

additional arguments to be passed to plot_DPMst. Only used if doPlot is TRUE.

Value

a object of class DPMclust with the following attributes:

mcmc_partitions:

a list of length N. Each element mcmc_partitions[n] is a vector of length n giving the partition of the n observations.

alpha:

a vector of length N. cost[j] is the cost associated to partition c[[j]]

U_SS_list:

a list of length N containing the lists of sufficient statistics for all the mixture components at each MCMC iteration

weights_list:

a list of length N containing the weights of each mixture component for each MCMC iterations

logposterior_list:

a list of length N containing the logposterior values at each MCMC iterations

data:

the data matrix d x n with d dimensions in rows and n observations in columns

nb_mcmcit:

the number of MCMC iterations

clust_distrib:

the parametric distribution of the mixture component - "skewt"

hyperG0:

the prior on the cluster location

Author(s)

Boris Hejblum

References

Hejblum BP, Alkhassim C, Gottardo R, Caron F and Thiebaut R (2019) Sequential Dirichlet Process Mixtures of Multivariate Skew t-distributions for Model-based Clustering of Flow Cytometry Data. The Annals of Applied Statistics, 13(1): 638-660. <doi: 10.1214/18-AOAS1209> <arXiv: 1702.04407> https://arxiv.org/abs/1702.04407 doi:10.1214/18-AOAS1209

Examples

rm(list=ls())

#Number of data
n <- 2000
set.seed(123)
#set.seed(4321)


d <- 2
ncl <- 4

# Sample data

sdev <- array(dim=c(d,d,ncl))

xi <- matrix(nrow=d, ncol=ncl, c(-1.5, 1, 1.5, 1, 1.5, -2, -2, -2))
psi <- matrix(nrow=d, ncol=4, c(0.4, -0.6, 0.8, 0, 0.3, -0.7, -0.3, -0.8))
p <- c(0.2, 0.1, 0.4, 0.3) # frequence des clusters
sdev[, ,1] <- matrix(nrow=d, ncol=d, c(0.3, 0, 0, 0.3))
sdev[, ,2] <- matrix(nrow=d, ncol=d, c(0.1, 0, 0, 0.3))
sdev[, ,3] <- matrix(nrow=d, ncol=d, c(0.3, 0.15, 0.15, 0.3))
sdev[, ,4] <- .3*diag(2)


c <- rep(0,n)
z <- matrix(0, nrow=d, ncol=n)
for(k in 1:n){
 c[k] = which(rmultinom(n=1, size=1, prob=p)!=0)
 z[,k] <- (xi[, c[k]]
          + psi[, c[k]]*abs(rnorm(1))
          + sdev[, , c[k]]%*%matrix(rnorm(d, mean = 0, sd = 1), nrow=d, ncol=1))
 #cat(k, "/", n, " observations simulated\n", sep="")
}

# Set parameters of G0
hyperG0 <- list()
hyperG0[["b_xi"]] <- rep(0,d)
hyperG0[["b_psi"]] <- rep(0,d)
hyperG0[["kappa"]] <- 0.001
hyperG0[["D_xi"]] <- 100
hyperG0[["D_psi"]] <- 100
hyperG0[["nu"]] <- d + 1
hyperG0[["lambda"]] <- diag(d)

 # hyperprior on the Scale parameter of DPM
 a <- 0.0001
 b <- 0.0001

 # do some plots
 doPlot <- TRUE
 nbclust_init <- 30



 ## Data
 ########
library(ggplot2)
 p <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,]), aes(x=X, y=Y))
       + geom_point()
       + ggtitle("Simple example in 2d data")
       +xlab("D1")
       +ylab("D2")
       +theme_bw())
 p

 c2plot <- factor(c)
 levels(c2plot) <- c("3", "2", "4", "1")
 pp <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,], "Cluster"=as.character(c2plot)))
       + geom_point(aes(x=X, y=Y, colour=Cluster, fill=Cluster))
       + ggtitle("Slightly overlapping skew-normal simulation\n")
       + xlab("D1")
       + ylab("D2")
       + theme_bw()
       + scale_colour_discrete(guide=guide_legend(override.aes = list(size = 6, shape=22))))
 pp


 ## alpha priors plots
 #####################
 prioralpha <- data.frame("alpha"=rgamma(n=5000, shape=a, scale=1/b),
                         "distribution" =factor(rep("prior",5000),
                         levels=c("prior", "posterior")))
 p <- (ggplot(prioralpha, aes(x=alpha))
       + geom_histogram(aes(y=..density..),
                        colour="black", fill="white")
       + geom_density(alpha=.2, fill="red")
       + ggtitle(paste("Prior distribution on alpha: Gamma(", a,
                 ",", b, ")\n", sep=""))
      )
 p


if(interactive()){
 # Gibbs sampler for Dirichlet Process Mixtures
 ##############################################
 MCMCsample_st <- DPMGibbsSkewT(z, hyperG0, a, b, N=2000,
                                doPlot, nbclust_init, plotevery=100, gg.add=list(theme_bw(),
                                 guides(shape=guide_legend(override.aes = list(fill="grey45")))),
                                diagVar=FALSE)
 s <- summary(MCMCsample_st, burnin = 350)
 print(s)
 plot(s)
 plot_ConvDPM(MCMCsample_st, from=2)
 cluster_est_binder(MCMCsample_st$mcmc_partitions[1500:2000])
}

Slice Sampling of Dirichlet Process Mixture of skew Student's t-distributions

Description

Slice Sampling of Dirichlet Process Mixture of skew Student's t-distributions

Usage

DPMGibbsSkewT_SeqPrior(
  z,
  prior_inform,
  hyperG0,
  N,
  nbclust_init,
  add.vagueprior = TRUE,
  weightnoninfo = NULL,
  doPlot = TRUE,
  plotevery = N/10,
  diagVar = TRUE,
  verbose = TRUE,
  ...
)

Arguments

z

data matrix d x n with d dimensions in rows and n observations in columns.

prior_inform

an informative prior such as the approximation computed by summary.DPMMclust.

hyperG0

prior mixing distribution.

N

number of MCMC iterations.

nbclust_init

number of clusters at initialization. Default to 30 (or less if there are less than 30 observations).

add.vagueprior

logical flag indicating whether a non informative component should be added to the informative prior. Default is TRUE.

weightnoninfo

a real between 0 and 1 giving the weights of the non informative component in the prior.

doPlot

logical flag indicating whether to plot MCMC iteration or not. Default to TRUE.

plotevery

an integer indicating the interval between plotted iterations when doPlot is TRUE.

diagVar

logical flag indicating whether the variance of each cluster is estimated as a diagonal matrix, or as a full matrix. Default is TRUE (diagonal variance).

verbose

logical flag indicating whether partition info is written in the console at each MCMC iteration.

...

additional arguments to be passed to plot_DPM. Only used if doPlot is TRUE.

Value

a object of class DPMclust with the following attributes:

mcmc_partitions:

a list of length N. Each element mcmc_partitions[n] is a vector of length n giving the partition of the n observations.

alpha:

a vector of length N. cost[j] is the cost associated to partition c[[j]]

U_SS_list:

a list of length N containing the lists of sufficient statistics for all the mixture components at each MCMC iteration

weights_list:

a list of length N containing the weights of each mixture component for each MCMC iterations

logposterior_list:

a list of length N containing the logposterior values at each MCMC iterations

data:

the data matrix d x n with d dimensions in rows and n observations in columns

nb_mcmcit:

the number of MCMC iterations

clust_distrib:

the parametric distribution of the mixture component - "skewt"

hyperG0:

the prior on the cluster location

Author(s)

Boris Hejblum

References

Hejblum BP, Alkhassim C, Gottardo R, Caron F and Thiebaut R (2019) Sequential Dirichlet Process Mixtures of Multivariate Skew t-distributions for Model-based Clustering of Flow Cytometry Data. The Annals of Applied Statistics, 13(1): 638-660. <doi: 10.1214/18-AOAS1209> <arXiv: 1702.04407> https://arxiv.org/abs/1702.04407 doi:10.1214/18-AOAS1209

Examples

rm(list=ls())

#Number of data
n <- 2000
set.seed(123)


d <- 2
ncl <- 4

# Sample data

sdev <- array(dim=c(d,d,ncl))

xi <- matrix(nrow=d, ncol=ncl, c(-1.5, 1, 1.5, 1, 1.5, -2, -2, -2))
psi <- matrix(nrow=d, ncol=4, c(0.4, -0.6, 0.8, 0, 0.3, -0.7, -0.3, -0.8))
nu <- c(100,15,8,5)
p <- c(0.15, 0.05, 0.5, 0.3) # frequence des clusters
sdev[, ,1] <- matrix(nrow=d, ncol=d, c(0.3, 0, 0, 0.3))
sdev[, ,2] <- matrix(nrow=d, ncol=d, c(0.1, 0, 0, 0.3))
sdev[, ,3] <- matrix(nrow=d, ncol=d, c(0.3, 0.15, 0.15, 0.3))
sdev[, ,4] <- .3*diag(2)


c <- rep(0,n)
w <- rep(1,n)
z <- matrix(0, nrow=d, ncol=n)
for(k in 1:n){
 c[k] = which(rmultinom(n=1, size=1, prob=p)!=0)
 w[k] <- rgamma(1, shape=nu[c[k]]/2, rate=nu[c[k]]/2)
 z[,k] <- xi[, c[k]] + psi[, c[k]]*rtruncnorm(n=1, a=0, b=Inf, mean=0, sd=1/sqrt(w[k])) +
                (sdev[, , c[k]]/sqrt(w[k]))%*%matrix(rnorm(d, mean = 0, sd = 1), nrow=d, ncol=1)
 #cat(k, "/", n, " observations simulated\n", sep="")
}

# Set parameters of G0
hyperG0 <- list()
hyperG0[["b_xi"]] <- rowMeans(z)
hyperG0[["b_psi"]] <- rep(0,d)
hyperG0[["kappa"]] <- 0.001
hyperG0[["D_xi"]] <- 100
hyperG0[["D_psi"]] <- 100
hyperG0[["nu"]] <- d+1
hyperG0[["lambda"]] <- diag(apply(z,MARGIN=1, FUN=var))/3

 # hyperprior on the Scale parameter of DPM
 a <- 0.0001
 b <- 0.0001

 # do some plots
 nbclust_init <- 30

 ## Plot Data
 library(ggplot2)
 q <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,]), aes(x=X, y=Y))
       + geom_point()
       + ggtitle("Simple example in 2d data")
       +xlab("D1")
       +ylab("D2")
       +theme_bw())
 q

if(interactive()){
 MCMCsample_st <- DPMGibbsSkewT(z, hyperG0, a, b, N=2000,
                                doPlot=TRUE, plotevery=250,
                                nbclust_init, diagVar=FALSE,
                                gg.add=list(theme_bw(),
                                 guides(shape=guide_legend(override.aes = list(fill="grey45")))))
 s <- summary(MCMCsample_st, burnin = 1500, thin=2, posterior_approx=TRUE)
 F <- FmeasureC(pred=s$point_estim$c_est, ref=c)

for(k in 1:n){
 c[k] = which(rmultinom(n=1, size=1, prob=p)!=0)
 w[k] <- rgamma(1, shape=nu[c[k]]/2, rate=nu[c[k]]/2)
 z[,k] <- xi[, c[k]] + psi[, c[k]]*rtruncnorm(n=1, a=0, b=Inf, mean=0, sd=1/sqrt(w[k])) +
                (sdev[, , c[k]]/sqrt(w[k]))%*%matrix(rnorm(d, mean = 0, sd = 1), nrow=d, ncol=1)
 cat(k, "/", n, " observations simulated\n", sep="")
}
 MCMCsample_st2 <- DPMGibbsSkewT_SeqPrior(z, prior=s$param_posterior,
                                          hyperG0, N=2000,
                                          doPlot=TRUE, plotevery=100,
                                          nbclust_init, diagVar=FALSE,
                                          gg.add=list(theme_bw(),
                                 guides(shape=guide_legend(override.aes = list(fill="grey45")))))
s2 <- summary(MCMCsample_st2, burnin = 1500, thin=5)
F2 <- FmeasureC(pred=s2$point_estim$c_est, ref=c)

# MCMCsample_st2_par <- DPMGibbsSkewT_SeqPrior_parallel(Ncpus= 2, type_connec="SOCK",
#                                                       z, prior_inform=s$param_posterior,
#                                                       hyperG0, N=2000,
#                                                       doPlot=TRUE, plotevery=50,
#                                                       nbclust_init, diagVar=FALSE,
#                                                       gg.add=list(theme_bw(),
#                                  guides(shape=guide_legend(override.aes = list(fill="grey45"))))
}

Slice Sampling of Dirichlet Process Mixture of skew Student's t-distributions

Description

Slice Sampling of Dirichlet Process Mixture of skew Student's t-distributions

Usage

DPMGibbsSkewT_SeqPrior_parallel(
  Ncpus,
  type_connec,
  z,
  prior_inform,
  hyperG0,
  N,
  nbclust_init,
  add.vagueprior = TRUE,
  weightnoninfo = NULL,
  doPlot = FALSE,
  plotevery = N/10,
  diagVar = TRUE,
  verbose = TRUE,
  monitorfile = "",
  ...
)

Arguments

Ncpus

the number of processors available

type_connec

The type of connection between the processors. Supported cluster types are "SOCK", "FORK", "MPI", and "NWS". See also makeCluster.

z

data matrix d x n with d dimensions in rows and n observations in columns.

prior_inform

an informative prior such as the approximation computed by summary.DPMMclust.

hyperG0

prior mixing distribution.

N

number of MCMC iterations.

nbclust_init

number of clusters at initialization. Default to 30 (or less if there are less than 30 observations).

add.vagueprior

logical flag indicating whether a non informative component should be added to the informative prior. Default is TRUE.

weightnoninfo

a real between 0 and 1 giving the weights of the non informative component in the prior.

doPlot

logical flag indicating whether to plot MCMC iteration or not. Default to TRUE.

plotevery

an integer indicating the interval between plotted iterations when doPlot is TRUE.

diagVar

logical flag indicating whether the variance of each cluster is estimated as a diagonal matrix, or as a full matrix. Default is TRUE (diagonal variance).

verbose

logical flag indicating whether partition info is written in the console at each MCMC iteration.

monitorfile

a writable connections or a character string naming a file to write into, to monitor the progress of the analysis. Default is "" which is no monitoring. See Details.

...

additional arguments to be passed to plot_DPM. Only used if doPlot is TRUE.

Value

a object of class DPMclust with the following attributes:

mcmc_partitions:

a list of length N. Each element mcmc_partitions[n] is a vector of length n giving the partition of the n observations.

alpha:

a vector of length N. cost[j] is the cost associated to partition c[[j]]

U_SS_list:

a list of length N containing the lists of sufficient statistics for all the mixture components at each MCMC iteration

weights_list:

a list of length N containing the logposterior values at each MCMC iterations

logposterior_list:

a list of length N containing the logposterior values at each MCMC iterations

data:

the data matrix d x n with d dimensions in rows and n observations in columns

nb_mcmcit:

the number of MCMC iterations

clust_distrib:

the parametric distribution of the mixture component - "skewt"

hyperG0:

the prior on the cluster location

Author(s)

Boris Hejblum

References

Hejblum BP, Alkhassim C, Gottardo R, Caron F and Thiebaut R (2019) Sequential Dirichlet Process Mixtures of Multivariate Skew t-distributions for Model-based Clustering of Flow Cytometry Data. The Annals of Applied Statistics, 13(1): 638-660. <doi: 10.1214/18-AOAS1209> <arXiv: 1702.04407> https://arxiv.org/abs/1702.04407 doi:10.1214/18-AOAS1209

Examples

rm(list=ls())

#Number of data
n <- 2000
set.seed(123)


d <- 2
ncl <- 4

# Sample data

sdev <- array(dim=c(d,d,ncl))

#xi <- matrix(nrow=d, ncol=ncl, c(-1.5, 1.5, 1.5, 1.5, 2, -2.5, -2.5, -3))
#psi <- matrix(nrow=d, ncol=4, c(0.4, -0.6, 0.8, 0, 0.3, -0.7, -0.3, -0.8))
xi <- matrix(nrow=d, ncol=ncl, c(-0.2, 0.5, 2.4, 0.4, 0.6, -1.3, -0.9, -2.7))
psi <- matrix(nrow=d, ncol=4, c(0.3, -0.7, -0.8, 0, 0.3, -0.7, 0.2, 0.9))
nu <- c(100,15,8,5)
p <- c(0.15, 0.05, 0.5, 0.3) # frequence des clusters
sdev[, ,1] <- matrix(nrow=d, ncol=d, c(0.3, 0, 0, 0.3))
sdev[, ,2] <- matrix(nrow=d, ncol=d, c(0.1, 0, 0, 0.3))
sdev[, ,3] <- matrix(nrow=d, ncol=d, c(0.3, 0.15, 0.15, 0.3))
sdev[, ,4] <- .3*diag(2)


c <- rep(0,n)
w <- rep(1,n)
z <- matrix(0, nrow=d, ncol=n)
for(k in 1:n){
 c[k] = which(rmultinom(n=1, size=1, prob=p)!=0)
 w[k] <- rgamma(1, shape=nu[c[k]]/2, rate=nu[c[k]]/2)
 z[,k] <- xi[, c[k]] + psi[, c[k]]*rtruncnorm(n=1, a=0, b=Inf, mean=0, sd=1/sqrt(w[k])) +
                (sdev[, , c[k]]/sqrt(w[k]))%*%matrix(rnorm(d, mean = 0, sd = 1), nrow=d, ncol=1)
 #cat(k, "/", n, " observations simulated\n", sep="")
}

# Set parameters of G0
hyperG0 <- list()
hyperG0[["b_xi"]] <- rowMeans(z)
hyperG0[["b_psi"]] <- rep(0,d)
hyperG0[["kappa"]] <- 0.001
hyperG0[["D_xi"]] <- 100
hyperG0[["D_psi"]] <- 100
hyperG0[["nu"]] <- d+1
hyperG0[["lambda"]] <- diag(apply(z,MARGIN=1, FUN=var))/3

 # hyperprior on the Scale parameter of DPM
 a <- 0.0001
 b <- 0.0001

 # do some plots
 nbclust_init <- 30

 ## Plot Data
 library(ggplot2)
 q <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,]), aes(x=X, y=Y))
       + geom_point()
       + ggtitle("Simple example in 2d data")
       +xlab("D1")
       +ylab("D2")
       +theme_bw())
 q

if(interactive()){
 MCMCsample_st <- DPMGibbsSkewT(z, hyperG0, a, b, N=2000,
                                doPlot=TRUE, plotevery=250,
                                nbclust_init,
                                gg.add=list(theme_bw(),
                                 guides(shape=guide_legend(override.aes = list(fill="grey45")))),
                                diagVar=FALSE)
 s <- summary(MCMCsample_st, burnin = 1500, thin=5, posterior_approx=TRUE)
 F <- FmeasureC(pred=s$point_estim$c_est, ref=c)

for(k in 1:n){
 c[k] = which(rmultinom(n=1, size=1, prob=p)!=0)
 w[k] <- rgamma(1, shape=nu[c[k]]/2, rate=nu[c[k]]/2)
 z[,k] <- xi[, c[k]] + psi[, c[k]]*rtruncnorm(n=1, a=0, b=Inf, mean=0, sd=1/sqrt(w[k])) +
                (sdev[, , c[k]]/sqrt(w[k]))%*%matrix(rnorm(d, mean = 0, sd = 1), nrow=d, ncol=1)
 #cat(k, "/", n, " observations simulated\n", sep="")
}
MCMCsample_st2 <- DPMGibbsSkewT_SeqPrior_parallel(Ncpus=2, type_connec="SOCK",
                                                  z, prior_inform=s$param_posterior,
                                                  hyperG0, N=3000,
                                                  doPlot=TRUE, plotevery=100,
                                                  nbclust_init, diagVar=FALSE, verbose=FALSE,
                                                  gg.add=list(theme_bw(),
                                 guides(shape=guide_legend(override.aes = list(fill="grey45")))))
s2 <- summary(MCMCsample_st2, burnin = 2000, thin=5)
F2 <- FmeasureC(pred=s2$point_estim$c_est, ref=c)
}

Posterior estimation for Dirichlet process mixture of multivariate (potentially skew) distributions models

Description

Partially collapse slice Gibbs sampling for Dirichlet process mixture of multivariate normal, skew normal or skew t distributions.

Usage

DPMpost(
  data,
  hyperG0,
  a = 1e-04,
  b = 1e-04,
  N,
  doPlot = TRUE,
  nbclust_init = 30,
  plotevery = floor(N/10),
  diagVar = TRUE,
  verbose = TRUE,
  distrib = c("gaussian", "skewnorm", "skewt"),
  ncores = 1,
  type_connec = "SOCK",
  informPrior = NULL,
  ...
)

Arguments

data

data matrix d x n with d dimensions in rows and n observations in columns.

hyperG0

prior mixing distribution.

a

shape hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001.

b

scale hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001. If 0, then the concentration is fixed set to a.

N

number of MCMC iterations.

doPlot

logical flag indicating whether to plot MCMC iteration or not. Default to TRUE.

nbclust_init

number of clusters at initialization. Default to 30 (or less if there are less than 30 observations).

plotevery

an integer indicating the interval between plotted iterations when doPlot is TRUE.

diagVar

logical flag indicating whether the variance of each cluster is estimated as a diagonal matrix, or as a full matrix. Default is TRUE (diagonal variance).

verbose

logical flag indicating whether partition info is written in the console at each MCMC iteration.

distrib

the distribution used for the clustering. Current possibilities are "gaussian", "skewnorm" and "skewt".

ncores

number of cores to use.

type_connec

The type of connection between the processors. Supported cluster types are "SOCK", "FORK", "MPI", and "NWS". See also makeCluster.

informPrior

an optional informative prior such as the approximation computed by summary.DPMMclust.

...

additional arguments to be passed to plot_DPM. Only used if doPlot is TRUE.

Details

This function is a wrapper around the following functions: DPMGibbsN, DPMGibbsN_parallel, DPMGibbsN_SeqPrior, DPMGibbsSkewN, DPMGibbsSkewN_parallel, DPMGibbsSkewT, DPMGibbsSkewT_parallel, DPMGibbsSkewT_SeqPrior, DPMGibbsSkewT_SeqPrior_parallel.

Value

a object of class DPMclust with the following attributes:

mcmc_partitions:

a list of length N. Each element mcmc_partitions[n] is a vector of length n giving the partition of the n observations.

alpha:

a vector of length N. cost[j] is the cost associated to partition c[[j]]

U_SS_list:

a list of length N containing the lists of sufficient statistics for all the mixture components at each MCMC iteration

weights_list:

a list of length N containing the weights of each mixture component for each MCMC iterations

logposterior_list:

a list of length N containing the logposterior values at each MCMC iterations

data:

the data matrix d x n with d dimensions in rows and n observations in columns

nb_mcmcit:

the number of MCMC iterations

clust_distrib:

the parametric distribution of the mixture component

hyperG0:

the prior on the cluster location

Author(s)

Boris Hejblum

References

Hejblum BP, Alkhassim C, Gottardo R, Caron F and Thiebaut R (2019) Sequential Dirichlet Process Mixtures of Multivariate Skew t-distributions for Model-based Clustering of Flow Cytometry Data. The Annals of Applied Statistics, 13(1): 638-660. <doi: 10.1214/18-AOAS1209> <arXiv: 1702.04407> https://arxiv.org/abs/1702.04407 doi:10.1214/18-AOAS1209

See Also

summary.DPMMclust

Examples

#rm(list=ls())
set.seed(123)

# Exemple in 2 dimensions with skew-t distributions

# Generate data:
n <- 2000 # number of data points
d <- 2 # dimensions
ncl <- 4 # number of true clusters
sdev <- array(dim=c(d,d,ncl))
xi <- matrix(nrow=d, ncol=ncl, c(-1.5, 1.5, 1.5, 1.5, 2, -2.5, -2.5, -3))
psi <- matrix(nrow=d, ncol=4, c(0.3, -0.7, -0.8, 0, 0.3, -0.7, 0.2, 0.9))
nu <- c(100,25,8,5)
proba <- c(0.15, 0.05, 0.5, 0.3) # cluster frequencies
sdev[, ,1] <- matrix(nrow=d, ncol=d, c(0.3, 0, 0, 0.3))
sdev[, ,2] <- matrix(nrow=d, ncol=d, c(0.1, 0, 0, 0.3))
sdev[, ,3] <- matrix(nrow=d, ncol=d, c(0.3, 0, 0, 0.2))
sdev[, ,4] <- .3*diag(2)
c <- rep(0,n)
w <- rep(1,n)
z <- matrix(0, nrow=d, ncol=n)
for(k in 1:n){
 c[k] = which(rmultinom(n=1, size=1, prob=proba)!=0)
 w[k] <- rgamma(1, shape=nu[c[k]]/2, rate=nu[c[k]]/2)
 z[,k] <- xi[, c[k]] + psi[, c[k]]*rtruncnorm(n=1, a=0, b=Inf, mean=0, sd=1/sqrt(w[k])) +
               (sdev[, , c[k]]/sqrt(w[k]))%*%matrix(rnorm(d, mean = 0, sd = 1), nrow=d, ncol=1)
}

# Define hyperprior
hyperG0 <- list()
hyperG0[["b_xi"]] <- rowMeans(z)
hyperG0[["b_psi"]] <- rep(0,d)
hyperG0[["kappa"]] <- 0.001
hyperG0[["D_xi"]] <- 100
hyperG0[["D_psi"]] <- 100
hyperG0[["nu"]] <- d+1
hyperG0[["lambda"]] <- diag(apply(z,MARGIN=1, FUN=var))/3


if(interactive()){
# Plot data
cytoScatter(z)

# Estimate posterior
MCMCsample_st <- DPMpost(data=z, hyperG0=hyperG0, N=2000,
   distrib="skewt",
   gg.add=list(ggplot2::theme_bw(),
      ggplot2::guides(shape=ggplot2::guide_legend(override.aes = list(fill="grey45"))))
 )
 s <- summary(MCMCsample_st, burnin = 1600, thin=5, lossFn = "Binder")
 s
 plot(s)
 #plot(s, hm=TRUE) # this can take a few sec...
 
 
 # more data plotting:
 library(ggplot2)
 p <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,]), aes(x=X, y=Y))
       + geom_point()
       + ggtitle("Unsupervised data")
       + xlab("D1")
       + ylab("D2")
       + theme_bw()
 )
 p

 c2plot <- factor(c)
 levels(c2plot) <- c("4", "1", "3", "2")
 pp <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,], "Cluster"=as.character(c2plot)))
       + geom_point(aes(x=X, y=Y, colour=Cluster, fill=Cluster))
       + ggtitle("True clusters")
       + xlab("D1")
       + ylab("D2")
       + theme_bw()
       + scale_colour_discrete(guide=guide_legend(override.aes = list(size = 6, shape=22)))
 )
 pp
}




# Exemple in 2 dimensions with Gaussian distributions

set.seed(1234)

# Generate data 
n <- 2000 # number of data points
d <- 2 # dimensions
ncl <- 4 # number of true clusters
m <- matrix(nrow=2, ncol=4, c(-1, 1, 1.5, 2, 2, -2, -1.5, -2)) # cluster means
sdev <- array(dim=c(2, 2, 4)) # cluster standard-deviations
sdev[, ,1] <- matrix(nrow=2, ncol=2, c(0.3, 0, 0, 0.3))
sdev[, ,2] <- matrix(nrow=2, ncol=2, c(0.1, 0, 0, 0.3))
sdev[, ,3] <- matrix(nrow=2, ncol=2, c(0.3, 0.15, 0.15, 0.3))
sdev[, ,4] <- .3*diag(2)
proba <- c(0.15, 0.05, 0.5, 0.3) # cluster frequencies
c <- rep(0,n)
z <- matrix(0, nrow=2, ncol=n)
for(k in 1:n){
 c[k] = which(rmultinom(n=1, size=1, prob=proba)!=0)
 z[,k] <- m[, c[k]] + sdev[, , c[k]]%*%matrix(rnorm(2, mean = 0, sd = 1), nrow=2, ncol=1)
}

# Define hyperprior
hyperG0 <- list()
hyperG0[["mu"]] <- rep(0,d)
hyperG0[["kappa"]] <- 0.001
hyperG0[["nu"]] <- d+2
hyperG0[["lambda"]] <- diag(d)


if(interactive()){
# Plot data
cytoScatter(z)

# Estimate posterior
MCMCsample_n <- DPMpost(data=z, hyperG0=hyperG0, N=2000,
   distrib="gaussian", diagVar=FALSE,
   gg.add=list(ggplot2::theme_bw(),
      ggplot2::guides(shape=ggplot2::guide_legend(override.aes = list(fill="grey45"))))
 )
 s <- summary(MCMCsample_n, burnin = 1500, thin=5, lossFn = "Binder")
 s
 plot(s)
 #plot(s, hm=TRUE) # this can take a few sec...
 
 
 # more data plotting:
 library(ggplot2)
 p <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,]), aes(x=X, y=Y))
       + geom_point()
       + ggtitle("Unsupervised data")
       + xlab("D1")
       + ylab("D2")
       + theme_bw()
 )
 p

 c2plot <- factor(c)
 levels(c2plot) <- c("4", "1", "3", "2")
 pp <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,], "Cluster"=as.character(c2plot)))
       + geom_point(aes(x=X, y=Y, colour=Cluster, fill=Cluster))
       #+ ggtitle("Slightly overlapping skew-normal simulation\n")
       + xlab("D1")
       + ylab("D2")
       + theme_bw()
       + scale_colour_discrete(guide=guide_legend(override.aes = list(size = 6, shape=22)))
       + ggtitle("True clusters")
 )
 pp
}

ELoss of a partition point estimate compared to a gold standard

Description

Evaluate the loss of a point estimate of the partition compared to a gold standard according to a given loss function

Usage

evalClustLoss(c, gs, lossFn = "F-measure", a = 1, b = 1)

Arguments

c

vector of length n containing the estimated partition of the n observations.

gs

vector of length n containing the gold standard partition of the n observations.

lossFn

character string specifying the loss function to be used. Either "F-measure" or "Binder" (see Details). Default is "F-measure".

a

only relevant if lossFn is "Binder". Penalty for wrong co-clustering in c compared to gs. Defaults is 1.

b

only relevant if lossFn is "Binder". Penalty for missed co-clustering in c compared to gs. Defaults is 1.

Details

The cost of a point estimate partition is calculated using either a pairwise coincidence loss function (Binder), or 1-Fmeasure (F-measure).

Value

the cost of the point estimate c in regard of the gold standard gs for a given loss function.

Author(s)

Boris Hejblum

References

J.W. Lau & P.J. Green. Bayesian Model-Based Clustering Procedures, Journal of Computational and Graphical Statistics, 16(3): 526-558, 2007.

D. B. Dahl. Model-Based Clustering for Expression Data via a Dirichlet Process Mixture Model, in Bayesian Inference for Gene Expression and Proteomics, K.-A. Do, P. Muller, M. Vannucci (Eds.), Cambridge University Press, 2006.

See Also

similarityMat, cluster_est_binder


Compute a limited F-measure

Description

A limited version of F-measure that only takes into account small clusters

Usage

Flimited(n_small_clst, pred, ref)

Arguments

n_small_clst

an integer for limit size of the small cluster

pred

vector of a predicted partition

ref

vector of a reference partition

References

Hejblum BP, Alkhassim C, Gottardo R, Caron F and Thiebaut R (2019) Sequential Dirichlet Process Mixtures of Multivariate Skew t-distributions for Model-based Clustering of Flow Cytometry Data. The Annals of Applied Statistics, 13(1): 638-660. <doi: 10.1214/18-AOAS1209> <arXiv: 1702.04407> https://arxiv.org/abs/1702.04407 doi:10.1214/18-AOAS1209

Examples

pred <- c(rep(1, 5),rep(2, 8),rep(3,10))
ref <- c(rep(1, 5),rep(c(2,3), 4),rep(c(3,2),5))
FmeasureC(pred, ref)
Flimited(6, pred, ref)

Multiple cost computations with the F-measure as the loss function

Description

C++ implementation of multiple cost computations with the F-measure as the loss function using the Armadillo library

Usage

Fmeasure_costC(c)

Arguments

c

a matrix where each column is one MCMC partition

Value

a list with the following elements:

Fmeas:

TODO

cost:

TODO

Examples

library(NPflow)
c <- list(c(1,1,2,3,2,3), c(1,1,1,2,3,3),c(2,2,1,1,1,1))
#Fmeasure_costC(sapply(c, "["))

if(interactive()){
c2 <- list()
for(i in 1:100){
    c2 <- c(c2, list(rmultinom(n=1, size=2000, prob=rexp(n=2000))))
}
Fmeasure_costC(sapply(c2, "["))
}

C++ implementation of the F-measure computation

Description

C++ implementation of the F-measure computation

Usage

FmeasureC(pred, ref)

Arguments

pred

vector of a predicted partition

ref

vector of a reference partition

Examples

pred <- c(1,1,2,3,2,3)
ref <- c(2,2,1,1,1,3)
FmeasureC(pred, ref)

C++ implementation of the F-measure computation without the reference class 0

Description

Aghaeepour in FlowCAP 1 ignore the reference class labeled "0"

Usage

FmeasureC_no0(pred, ref)

Arguments

pred

vector of a predicted partition

ref

vector of a reference partition

References

N Aghaeepour, G Finak, H Hoos, TR Mosmann, RR Brinkman, R Gottardo, RH Scheuermann, Critical assessment of automated flow cytometry data analysis techniques, Nature Methods, 10(3):228-38, 2013.

Examples

library(NPflow)
pred <- c(1,1,2,3,2,3)
ref <- c(2,2,0,0,0,3)
FmeasureC(pred, ref)
FmeasureC_no0(pred, ref)

Multivariate log gamma function

Description

Multivariate log gamma function

Usage

lgamma_mv(x, p)

Arguments

x

strictly positive real number

p

integer


EM MAP for mixture of sNiW

Description

Maximum A Posteriori (MAP) estimation of mixture of Normal inverse Wishart distributed observations with an EM algorithm

Usage

MAP_sNiW_mmEM(
  xi_list,
  psi_list,
  S_list,
  hyperG0,
  init = NULL,
  K,
  maxit = 100,
  tol = 0.1,
  doPlot = TRUE,
  verbose = TRUE
)

MAP_sNiW_mmEM_weighted(
  xi_list,
  psi_list,
  S_list,
  obsweight_list,
  hyperG0,
  K,
  maxit = 100,
  tol = 0.1,
  doPlot = TRUE,
  verbose = TRUE
)

MAP_sNiW_mmEM_vague(
  xi_list,
  psi_list,
  S_list,
  hyperG0,
  K = 10,
  maxit = 100,
  tol = 0.1,
  doPlot = TRUE,
  verbose = TRUE
)

Arguments

xi_list

a list of length n, each element is a vector of size d containing the argument xi of the corresponding allocated cluster.

psi_list

a list of length n, each element is a vector of size d containing the argument psi of the corresponding allocated cluster.

S_list

a list of length n, each element is a matrix of size d x d containing the argument S of the corresponding allocated cluster.

hyperG0

prior mixing distribution used if init is NULL.

init

a list for initializing the algorithm with the following elements: b_xi, b_psi, lambda, B, nu. Default is NULL in which case the initialization of the algorithm is random.

K

integer giving the number of mixture components.

maxit

integer giving the maximum number of iteration for the EM algorithm. Default is 100.

tol

real number giving the tolerance for the stopping of the EM algorithm. Default is 0.1.

doPlot

a logical flag indicating whether the algorithm progression should be plotted. Default is TRUE.

verbose

logical flag indicating whether plot should be drawn. Default is TRUE.

obsweight_list

a list of length n where each element is a vector of weights for each sampled cluster at each MCMC iterations.

Details

MAP_sNiW_mmEM provides an estimation for the MAP of mixtures of Normal inverse Wishart distributed observations. MAP_sNiW_mmEM_vague provides an estimates incorporating a vague component in the mixture. MAP_sNiW_mmEM_weighted provides a weighted version of the algorithm.

Author(s)

Boris Hejblum, Chariff Alkhassim

Examples

set.seed(1234)
hyperG0 <- list()
hyperG0$b_xi <- c(0.3, -1.5)
hyperG0$b_psi <- c(0, 0)
hyperG0$kappa <- 0.001
hyperG0$D_xi <- 100
hyperG0$D_psi <- 100
hyperG0$nu <- 20
hyperG0$lambda <- diag(c(0.25,0.35))

hyperG0 <- list()
hyperG0$b_xi <- c(1, -1.5)
hyperG0$b_psi <- c(0, 0)
hyperG0$kappa <- 0.1
hyperG0$D_xi <- 1
hyperG0$D_psi <- 1
hyperG0$nu <- 2
hyperG0$lambda <- diag(c(0.25,0.35))

xi_list <- list()
psi_list <- list()
S_list <- list()
w_list <- list()

for(k in 1:200){
 NNiW <- rNNiW(hyperG0, diagVar=FALSE)
 xi_list[[k]] <- NNiW[["xi"]]
 psi_list[[k]] <- NNiW[["psi"]]
 S_list[[k]] <- NNiW[["S"]]
 w_list [[k]] <- 0.75
}


hyperG02 <- list()
hyperG02$b_xi <- c(-1, 2)
hyperG02$b_psi <- c(-0.1, 0.5)
hyperG02$kappa <- 0.1
hyperG02$D_xi <- 1
hyperG02$D_psi <- 1
hyperG02$nu <- 4
hyperG02$lambda <- 0.5*diag(2)

for(k in 201:400){
 NNiW <- rNNiW(hyperG02, diagVar=FALSE)
 xi_list[[k]] <- NNiW[["xi"]]
 psi_list[[k]] <- NNiW[["psi"]]
 S_list[[k]] <- NNiW[["S"]]
 w_list [[k]] <- 0.25

}

map <- MAP_sNiW_mmEM(xi_list, psi_list, S_list, hyperG0, K=2, tol=0.1)

MLE for Gamma distribution

Description

Maximum likelihood estimation of Gamma distributed observations distribution parameters

Usage

MLE_gamma(g)

Arguments

g

a list of Gamma distributed observation.

Examples

g_list <- list()
for(i in 1:1000){
 g_list <- c(g_list, rgamma(1, shape=100, rate=5))
}

mle <- MLE_gamma(g_list)
mle

EM MLE for mixture of NiW

Description

Maximum likelihood estimation of mixture of Normal inverse Wishart distributed observations with an EM algorithm

Usage

MLE_NiW_mmEM(
  mu_list,
  S_list,
  hyperG0,
  K,
  maxit = 100,
  tol = 0.1,
  doPlot = TRUE
)

Arguments

mu_list

a list of length N whose elements are observed vectors of length d of the mean parameters.

S_list

a list of length N whose elements are observed variance-covariance matrices of dimension d x d.

hyperG0

prior mixing distribution used for randomly initializing the algorithm.

K

integer giving the number of mixture components.

maxit

integer giving the maximum number of iteration for the EM algorithm. Default is 100.

tol

real number giving the tolerance for the stopping of the EM algorithm. Default is 0.1.

doPlot

a logical flag indicating whether the algorithm progression should be plotted. Default is TRUE.

Examples

set.seed(123)
U_mu <- list()
U_Sigma <- list()
U_nu<-list()
U_kappa<-list()

d <- 2
hyperG0 <- list()
hyperG0[["mu"]] <- rep(1,d)
hyperG0[["kappa"]] <- 0.01
hyperG0[["nu"]] <- d+1
hyperG0[["lambda"]] <- diag(d)

for(k in 1:200){

  NiW <- rNiW(hyperG0, diagVar=FALSE)
  U_mu[[k]] <-NiW[["mu"]]
  U_Sigma[[k]] <-NiW[["S"]]
}


hyperG02 <- list()
hyperG02[["mu"]] <- rep(2,d)
hyperG02[["kappa"]] <- 1
hyperG02[["nu"]] <- d+10
hyperG02[["lambda"]] <- diag(d)/10

for(k in 201:400){

  NiW <- rNiW(hyperG02, diagVar=FALSE)
  U_mu[[k]] <-NiW[["mu"]]
  U_Sigma[[k]] <-NiW[["S"]]
}


mle <- MLE_NiW_mmEM( U_mu, U_Sigma, hyperG0, K=2)

hyperG0[["mu"]]
hyperG02[["mu"]]
mle$U_mu

hyperG0[["lambda"]]
hyperG02[["lambda"]]
mle$U_lambda

hyperG0[["nu"]]
hyperG02[["nu"]]
mle$U_nu

hyperG0[["kappa"]]
hyperG02[["kappa"]]
mle$U_kappa

MLE for sNiW distributed observations

Description

Maximum likelihood estimation of Normal inverse Wishart distributed observations

Usage

MLE_sNiW(xi_list, psi_list, S_list, doPlot = TRUE)

Arguments

xi_list

a list of length N whose elements are observed vectors of length d of the mean parameters xi.

psi_list

a list of length N whose elements are observed vectors of length d of the skew parameters psi.

S_list

a list of length N whose elements are observed variance-covariance matrices of dimension d x d.

doPlot

a logical flag indicating whether the algorithm progression should be plotted. Default is TRUE.

Author(s)

Boris Hejblum, Chariff Alkhassim

Examples

hyperG0 <- list()
hyperG0$b_xi <- c(0.3, -1.5)
hyperG0$b_psi <- c(0, 0)
hyperG0$kappa <- 0.001
hyperG0$D_xi <- 100
hyperG0$D_psi <- 100
hyperG0$nu <- 35
hyperG0$lambda <- diag(c(0.25,0.35))

xi_list <- list()
psi_list <- list()
S_list <- list()
for(k in 1:1000){
 NNiW <- rNNiW(hyperG0, diagVar=FALSE)
 xi_list[[k]] <- NNiW[["xi"]]
 psi_list[[k]] <- NNiW[["psi"]]
 S_list[[k]] <- NNiW[["S"]]
}

mle <- MLE_sNiW(xi_list, psi_list, S_list)
mle

EM MLE for mixture of sNiW

Description

Maximum likelihood estimation of mixture of Normal inverse Wishart distributed observations with an EM algorithm

Usage

MLE_sNiW_mmEM(
  xi_list,
  psi_list,
  S_list,
  hyperG0,
  K,
  init = NULL,
  maxit = 100,
  tol = 0.1,
  doPlot = TRUE,
  verbose = TRUE
)

Arguments

xi_list

a list of length N whose elements are observed vectors of length d of the mean parameters xi.

psi_list

a list of length N whose elements are observed vectors of length d of the skew parameters psi.

S_list

a list of length N whose elements are observed variance-covariance matrices of dimension d x d.

hyperG0

prior mixing distribution used if init is NULL.

K

integer giving the number of mixture components.

init

a list for initializing the algorithm with the following elements: b_xi, b_psi, lambda, B, nu. Default is NULL in which case the initialization of the algorithm is random.

maxit

integer giving the maximum number of iteration for the EM algorithm. Default is 100.

tol

real number giving the tolerance for the stopping of the EM algorithm. Default is 0.1.

doPlot

a logical flag indicating whether the algorithm progression should be plotted. Default is TRUE.

verbose

logical flag indicating whether plot should be drawn. Default is TRUE.

Author(s)

Boris Hejblum, Chariff Alkhassim

Examples

set.seed(1234)
hyperG0 <- list()
hyperG0$b_xi <- c(0.3, -1.5)
hyperG0$b_psi <- c(0, 0)
hyperG0$kappa <- 0.001
hyperG0$D_xi <- 100
hyperG0$D_psi <- 100
hyperG0$nu <- 3
hyperG0$lambda <- diag(c(0.25,0.35))

xi_list <- list()
psi_list <- list()
S_list <- list()
for(k in 1:200){
 NNiW <- rNNiW(hyperG0, diagVar=FALSE)
 xi_list[[k]] <- NNiW[["xi"]]
 psi_list[[k]] <- NNiW[["psi"]]
 S_list[[k]] <- NNiW[["S"]]
}

hyperG02 <- list()
hyperG02$b_xi <- c(-1, 2)
hyperG02$b_psi <- c(-0.1, 0.5)
hyperG02$kappa <- 0.001
hyperG02$D_xi <- 10
hyperG02$D_psi <- 10
hyperG02$nu <- 3
hyperG02$lambda <- 0.5*diag(2)

for(k in 201:400){
 NNiW <- rNNiW(hyperG02, diagVar=FALSE)
 xi_list[[k]] <- NNiW[["xi"]]
 psi_list[[k]] <- NNiW[["psi"]]
 S_list[[k]] <- NNiW[["S"]]
}

mle <- MLE_sNiW_mmEM(xi_list, psi_list, S_list, hyperG0, K=2)

multivariate Normal inverse Wishart probability density function for multiple inputs

Description

multivariate Normal inverse Wishart probability density function for multiple inputs

Usage

mmNiWpdf(mu, Sigma, U_mu0, U_kappa0, U_nu0, U_lambda0, Log = TRUE)

Arguments

mu

data matrix of dimension p x n, p being the dimension of the data and n the number of data points, where each column is an observed mean vector.

Sigma

list of length n of observed variance-covariance matrices, each of dimensions p x p.

U_mu0

mean vectors matrix of dimension p x K, K being the number of distributions for which the density probability has to be evaluated

U_kappa0

vector of length K of scale parameters.

U_nu0

vector of length K of degree of freedom parameters.

U_lambda0

list of length K of variance-covariance matrices, each of dimensions p x p.

Log

logical flag for returning the log of the probability density function. Defaults is TRUE.

Value

matrix of densities of dimension K x n


C++ implementation of multivariate Normal inverse Wishart probability density function for multiple inputs

Description

C++ implementation of multivariate Normal inverse Wishart probability density function for multiple inputs

Usage

mmNiWpdfC(Mu, Sigma, U_Mu0, U_Kappa0, U_Nu0, U_Sigma0, Log = TRUE)

Arguments

Mu

data matrix of dimension p x n, p being the dimension of the data and n the number of data points, where each column is an observed mean vector.

Sigma

list of length n of observed variance-covariance matrices, each of dimensions p x p.

U_Mu0

mean vectors matrix of dimension p x K, K being the number of distributions for which the density probability has to be evaluated

U_Kappa0

vector of length K of scale parameters.

U_Nu0

vector of length K of degree of freedom parameters.

U_Sigma0

list of length K of variance-covariance matrices, each of dimensions p x p.

Log

logical flag for returning the log of the probability density function. Defaults is TRUE.

Value

matrix of densities of dimension K x n

References

Hejblum BP, Alkhassim C, Gottardo R, Caron F and Thiebaut R (2019) Sequential Dirichlet Process Mixtures of Multivariate Skew t-distributions for Model-based Clustering of Flow Cytometry Data. The Annals of Applied Statistics, 13(1): 638-660. <doi: 10.1214/18-AOAS1209>. <arXiv: 1702.04407>. https://arxiv.org/abs/1702.04407 doi:10.1214/18-AOAS1209


Probability density function of multiple structured Normal inverse Wishart

Description

Probability density function of structured Normal inverse Wishart (sNiW) for multiple inputs, on the log scale.

Usage

mmsNiWlogpdf(U_xi, U_psi, U_Sigma, U_xi0, U_psi0, U_B0, U_Sigma0, U_df0)

Arguments

U_xi

a list of length n of observed mean vectors, each of dimension p

U_psi

a list of length n of observed skew vectors of dimension p

U_Sigma

a list of length n of observed covariance matrices, each of dimension p x p

U_xi0

a list of length K of mean vector parameters for sNiW, each of dimension p

U_psi0

a list of length K of mean vector parameters for sNiW, each of dimension p

U_B0

a list of length K of structuring matrix parameters for sNiW, each of dimension 2 x 2

U_Sigma0

a list of length K of covariance matrix parameters for sNiW, each of dimension p x p

U_df0

a list of length K of degrees of freedom parameters for sNiW, each of dimension p x p

Examples

hyperG0 <- list()
hyperG0$b_xi <- c(-1.6983129, -0.4819131)
hyperG0$b_psi <- c(-0.0641866, -0.7606068)
hyperG0$kappa <- 0.001
hyperG0$D_xi <- 16.951313
hyperG0$D_psi <- 1.255192
hyperG0$nu <- 27.67656
hyperG0$lambda <- matrix(c(2.3397761, -0.3975259,-0.3975259, 1.9601773), ncol=2)

xi_list <- list()
psi_list <- list()
S_list <- list()
for(k in 1:1000){
 NNiW <- rNNiW(hyperG0, diagVar=FALSE)
 xi_list[[k]] <- NNiW[["xi"]]
 psi_list[[k]] <- NNiW[["psi"]]
 S_list[[k]] <- NNiW[["S"]]
}
mmsNiWlogpdf(U_xi=xi_list, U_psi=psi_list, U_Sigma=S_list,
            U_xi0=list(hyperG0$b_xi), U_psi0=list(hyperG0$b_psi) ,
            U_B0=list(diag(c(hyperG0$D_xi, hyperG0$D_psi))) ,
            U_Sigma0=list(hyperG0$lambda), U_df0=list(hyperG0$nu))


hyperG0 <- list()
hyperG0$b_xi <- c(-1.6983129)
hyperG0$b_psi <- c(-0.0641866)
hyperG0$kappa <- 0.001
hyperG0$D_xi <- 16.951313
hyperG0$D_psi <- 1.255192
hyperG0$nu <- 27.67656
hyperG0$lambda <- matrix(c(2.3397761), ncol=1)
#'xi_list <- list()
psi_list <- list()
S_list <- list()
for(k in 1:1000){
 NNiW <- rNNiW(hyperG0, diagVar=FALSE)
 xi_list[[k]] <- NNiW[["xi"]]
 psi_list[[k]] <- NNiW[["psi"]]
 S_list[[k]] <- NNiW[["S"]]
}

mmsNiWlogpdf(U_xi=xi_list, U_psi=psi_list, U_Sigma=S_list,
            U_xi0=list(hyperG0$b_xi), U_psi0=list(hyperG0$b_psi) ,
            U_B0=list(diag(c(hyperG0$D_xi, hyperG0$D_psi))) ,
            U_Sigma0=list(hyperG0$lambda), U_df0=list(hyperG0$nu))

C++ implementation of multivariate structured Normal inverse Wishart probability density function for multiple inputs

Description

C++ implementation of multivariate structured Normal inverse Wishart probability density function for multiple inputs

Usage

mmsNiWpdfC(xi, psi, Sigma, U_xi0, U_psi0, U_B0, U_Sigma0, U_df0, Log = TRUE)

Arguments

xi

data matrix of dimensions p x n where columns contain the observed mean vectors.

psi

data matrix of dimensions p x n where columns contain the observed skew parameter vectors.

Sigma

list of length n of observed variance-covariance matrices, each of dimensions p x p.

U_xi0

mean vectors matrix of dimension p x K, K being the number of distributions for which the density probability has to be evaluated.

U_psi0

skew parameter vectors matrix of dimension p x K.

U_B0

list of length K of structured scale matrices, each of dimensions p x p.

U_Sigma0

list of length K of variance-covariance matrices, each of dimensions p x p.

U_df0

vector of length K of degree of freedom parameters.

Log

logical flag for returning the log of the probability density function. Defaults is TRUE.

Value

matrix of densities of dimension K x n

References

Hejblum BP, Alkhassim C, Gottardo R, Caron F and Thiebaut R (2019) Sequential Dirichlet Process Mixtures of Multivariate Skew t-distributions for Model-based Clustering of Flow Cytometry Data. The Annals of Applied Statistics, 13(1): 638-660. <doi: 10.1214/18-AOAS1209>. <arXiv: 1702.04407>. https://arxiv.org/abs/1702.04407 doi:10.1214/18-AOAS1209


C++ implementation of multivariate Normal probability density function for multiple inputs

Description

C++ implementation of multivariate Normal probability density function for multiple inputs

Usage

mmvnpdfC(x, mean, varcovM, Log = TRUE)

Arguments

x

data matrix of dimension p x n, p being the dimension of the data and n the number of data points.

mean

mean vectors matrix of dimension p x K, K being the number of distributions for which the density probability has to be evaluated.

varcovM

list of length K of variance-covariance matrices, each of dimensions p x p.

Log

logical flag for returning the log of the probability density function. Defaults is TRUE.

Value

matrix of densities of dimension K x n.

Examples

if(require(microbenchmark)){
library(microbenchmark)
microbenchmark(mvnpdf(x=matrix(1.96), mean=0, varcovM=diag(1), Log=FALSE),
               mvnpdfC(x=matrix(1.96), mean=0, varcovM=diag(1), Log=FALSE),
               mmvnpdfC(x=matrix(1.96), mean=matrix(0), varcovM=list(diag(1)), Log=FALSE),
               times=1000L)
microbenchmark(mvnpdf(x=matrix(rep(1.96,2), nrow=2, ncol=1), mean=c(-0.2, 0.3),
                      varcovM=matrix(c(2, 0.2, 0.2, 2), ncol=2), Log=FALSE),
               mvnpdfC(x=matrix(rep(1.96,2), nrow=2, ncol=1), mean=c(-0.2, 0.3),
                       varcovM=matrix(c(2, 0.2, 0.2, 2), ncol=2), Log=FALSE),
               mmvnpdfC(x=matrix(rep(1.96,2), nrow=2, ncol=1),
                        mean=matrix(c(-0.2, 0.3), nrow=2, ncol=1),
                        varcovM=list(matrix(c(2, 0.2, 0.2, 2), ncol=2)), Log=FALSE),
               times=1000L)
microbenchmark(mvnpdf(x=matrix(c(rep(1.96,2),rep(0,2)), nrow=2, ncol=2),
                      mean=list(c(0,0),c(-1,-1), c(1.5,1.5)),
                      varcovM=list(diag(2),10*diag(2), 20*diag(2)), Log=FALSE),
               mmvnpdfC(matrix(c(rep(1.96,2),rep(0,2)), nrow=2, ncol=2),
                        mean=matrix(c(0,0,-1,-1, 1.5,1.5), nrow=2, ncol=3),
                        varcovM=list(diag(2),10*diag(2), 20*diag(2)), Log=FALSE),
               times=1000L)
}else{
cat("package 'microbenchmark' not available\n")
}

C++ implementation of multivariate skew Normal probability density function for multiple inputs

Description

C++ implementation of multivariate skew Normal probability density function for multiple inputs

Usage

mmvsnpdfC(x, xi, psi, sigma, Log = TRUE)

Arguments

x

data matrix of dimension p x n, p being the dimension of the data and n the number of data points.

xi

mean vectors matrix of dimension p x K, K being the number of distributions for which the density probability has to be evaluated.

psi

skew parameter vectors matrix of dimension p x K.

sigma

list of length K of variance-covariance matrices, each of dimensions p x p.

Log

logical flag for returning the log of the probability density function. Default is TRUE.

Value

matrix of densities of dimension K x n.

Author(s)

Boris Hejblum

Examples

mmvsnpdfC(x=matrix(rep(1.96,2), nrow=2, ncol=1),
         xi=matrix(c(0, 0)), psi=matrix(c(1, 1),ncol=1), sigma=list(diag(2)), Log=FALSE
         )
mmvsnpdfC(x=matrix(rep(1.96,2), nrow=2, ncol=1),
         xi=matrix(c(0, 0)), psi=matrix(c(1, 1),ncol=1), sigma=list(diag(2))
         )

if(require(microbenchmark)){
library(microbenchmark)
microbenchmark(mvsnpdf(x=matrix(rep(1.96,2), nrow=2, ncol=1), xi=c(0, 0), psi=c(1, 1),
                       sigma=diag(2), Log=FALSE),
               mmvsnpdfC(x=matrix(rep(1.96,2), nrow=2, ncol=1), xi=matrix(c(0, 0)),
                         psi=matrix(c(1, 1),ncol=1), sigma=list(diag(2)), Log=FALSE),
               times=1000L
             )
microbenchmark(mvsnpdf(x=matrix(c(rep(1.96,2),rep(0,2)), nrow=2, ncol=2),
                      xi=list(c(0,0),c(-1,-1), c(1.5,1.5)),
                      psi=list(c(0.1,0.1),c(-0.1,-1), c(0.5,-1.5)),
                      sigma=list(diag(2),10*diag(2), 20*diag(2)), Log=FALSE),
               mmvsnpdfC(matrix(c(rep(1.96,2),rep(0,2)), nrow=2, ncol=2),
                         xi=matrix(c(0,0,-1,-1, 1.5,1.5), nrow=2, ncol=3),
                         psi=matrix(c(0.1,0.1,-0.1,-1, 0.5,-1.5), nrow=2, ncol=3),
                         sigma=list(diag(2),10*diag(2), 20*diag(2)), Log=FALSE),
              times=1000L)
}else{
cat("package 'microbenchmark' not available\n")
}

C++ implementation of multivariate Normal probability density function for multiple inputs

Description

C++ implementation of multivariate Normal probability density function for multiple inputs

Usage

mmvstpdfC(x, xi, psi, sigma, df, Log = TRUE)

Arguments

x

data matrix of dimension p x n, p being the dimension of the data and n the number of data points.

xi

mean vectors matrix of dimension p x K, K being the number of distributions for which the density probability has to be evaluated.

psi

skew parameter vectors matrix of dimension p x K.

sigma

list of length K of variance-covariance matrices, each of dimensions p x p.

df

vector of length K of degree of freedom parameters.

Log

logical flag for returning the log of the probability density function. Defaults is TRUE.

Value

matrix of densities of dimension K x n.

Author(s)

Boris Hejblum

Examples

mmvstpdfC(x = matrix(c(3.399890,-5.936962), ncol=1), xi=matrix(c(0.2528859,-2.4234067)),
psi=matrix(c(11.20536,-12.51052), ncol=1),
sigma=list(matrix(c(0.2134011, -0.0382573, -0.0382573, 0.2660086), ncol=2)),
df=c(7.784106)
)
mvstpdf(x = matrix(c(3.399890,-5.936962), ncol=1), xi=c(0.2528859,-2.4234067),
psi=c(11.20536,-12.51052),
sigma=matrix(c(0.2134011, -0.0382573, -0.0382573, 0.2660086), ncol=2),
df=c(7.784106)
)

#skew-normal limit
mmvsnpdfC(x=matrix(rep(1.96,2), nrow=2, ncol=1),
         xi=matrix(c(0, 0)), psi=matrix(c(1, 1),ncol=1), sigma=list(diag(2))
         )
mvstpdf(x=matrix(rep(1.96,2), nrow=2, ncol=1),
       xi=c(0, 0), psi=c(1, 1), sigma=diag(2),
       df=100000000
       )
mmvstpdfC(x=matrix(rep(1.96,2), nrow=2, ncol=1),
         xi=matrix(c(0, 0)), psi=matrix(c(1, 1),ncol=1), sigma=list(diag(2)),
         df=100000000
         )

#non-skewed limit
mmvtpdfC(x=matrix(rep(1.96,2), nrow=2, ncol=1),
        mean=matrix(c(0, 0)), varcovM=list(diag(2)),
        df=10
        )
mmvstpdfC(x=matrix(rep(1.96,2), nrow=2, ncol=1),
         xi=matrix(c(0, 0)), psi=matrix(c(0, 0),ncol=1), sigma=list(diag(2)),
         df=10
         )

if(require(microbenchmark)){
library(microbenchmark)
microbenchmark(mvstpdf(x=matrix(rep(1.96,2), nrow=2, ncol=1),
                       xi=c(0, 0), psi=c(1, 1),
                       sigma=diag(2), df=10),
               mmvstpdfC(x=matrix(rep(1.96,2), nrow=2, ncol=1),
                         xi=matrix(c(0, 0)), psi=matrix(c(1, 1),ncol=1),
                         sigma=list(diag(2)), df=10),
               times=1000L)
}else{
cat("package 'microbenchmark' not available\n")
}

C++ implementation of multivariate Normal probability density function for multiple inputs

Description

C++ implementation of multivariate Normal probability density function for multiple inputs

Usage

mmvtpdfC(x, mean, varcovM, df, Log = TRUE)

Arguments

x

data matrix of dimension p x n, p being the dimension of the data and n the number of data points.

mean

mean vectors matrix of dimension p x K, K being the number of distributions for which the density probability has to be evaluated.

varcovM

list of length K of variance-covariance matrices, each of dimensions p x p.

df

vector of length K of degree of freedom parameters.

Log

logical flag for returning the log of the probability density function. Defaults is TRUE.

Value

matrix of densities of dimension K x n.

Author(s)

Boris Hejblum

Examples

mvnpdf(x=matrix(1.96), mean=0, varcovM=diag(1), Log=FALSE)
mvtpdf(x=matrix(1.96), mean=0, varcovM=diag(1), df=10000000, Log=FALSE)
mmvtpdfC(x=matrix(1.96), mean=matrix(0), varcovM=list(diag(1)), df=10000000, Log=FALSE)

mvnpdf(x=matrix(1.96), mean=0, varcovM=diag(1))
mvtpdf(x=matrix(1.96), mean=0, varcovM=diag(1), df=10000000)
mmvtpdfC(x=matrix(1.96), mean=matrix(0), varcovM=list(diag(1)), df=10000000)

mvtpdf(x=matrix(1.96), mean=0, varcovM=diag(1), df=10)
mmvtpdfC(x=matrix(1.96), mean=matrix(0), varcovM=list(diag(1)), df=10)


if(require(microbenchmark)){
library(microbenchmark)
microbenchmark(mvtpdf(x=matrix(1.96), mean=0, varcovM=diag(1), df=1, Log=FALSE),
               mmvtpdfC(x=matrix(1.96), mean=matrix(0), varcovM=list(diag(1)),
                        df=c(1), Log=FALSE),
               times=10000L)
}else{
cat("package 'microbenchmark' not available\n")
}

C++ implementation of multivariate Normal probability density function for multiple inputs

Description

C++ implementation of multivariate Normal probability density function for multiple inputs

Usage

mvnlikC(x, c, clustval, mu, sigma, loglik = TRUE)

Arguments

x

data matrix of dimension p x n, p being the dimension of the data and n the number of data points

c

integer vector of cluster allocations with values from 1 to K

clustval

vector of unique values from c in the order corresponding to the storage of cluster parameters in xi, psi, and varcovM

mu

mean vectors matrix of dimension p x K, K being the number of clusters

sigma

list of length K of variance-covariance matrices, each of dimensions p x p.

loglik

logical flag or returning the log-likelihood instead of the likelihood. Default is TRUE.

Value

a list:

"indiv":

vector of likelihood of length n;

"clust":

vector of likelihood of length K;

"total":

total (log)-likelihood;

Author(s)

Boris Hejblum


multivariate-Normal probability density function

Description

multivariate-Normal probability density function

Usage

mvnpdf(x, mean, varcovM, Log = TRUE)

Arguments

x

p x n data matrix with n the number of observations and p the number of dimensions

mean

mean vector or list of mean vectors (either a vector, a matrix or a list)

varcovM

variance-covariance matrix or list of variance-covariance matrices (either a matrix or a list)

Log

logical flag for returning the log of the probability density function. Defaults is TRUE.

Author(s)

Boris P. Hejblum

See Also

mvnpdf, mmvnpdfC

Examples

mvnpdf(x=matrix(1.96), mean=0, varcovM=diag(1), Log=FALSE)
dnorm(1.96)

mvnpdf(x=matrix(rep(1.96,2), nrow=2, ncol=1),
      mean=c(0, 0), varcovM=diag(2), Log=FALSE
)

C++ implementation of multivariate normal probability density function for multiple inputs

Description

Based on the implementation from Nino Hardt and Dicko Ahmadou https://gallery.rcpp.org/articles/dmvnorm_arma/ (accessed in August 2014)

Usage

mvnpdfC(x, mean, varcovM, Log = TRUE)

Arguments

x

data matrix

mean

mean vector

varcovM

variance covariance matrix

Log

logical flag for returning the log of the probability density function. Default is TRUE

Value

vector of densities

Author(s)

Boris P. Hejblum

Examples

mvnpdf(x=matrix(1.96), mean=0, varcovM=diag(1), Log=FALSE)
mvnpdfC(x=matrix(1.96), mean=0, varcovM=diag(1), Log=FALSE)
mvnpdf(x=matrix(1.96), mean=0, varcovM=diag(1))
mvnpdfC(x=matrix(1.96), mean=0, varcovM=diag(1))

if(require(microbenchmark)){
library(microbenchmark)
microbenchmark(dnorm(1.96),
               mvnpdf(x=matrix(1.96), mean=0, varcovM=diag(1), Log=FALSE),
               mvnpdfC(x=matrix(1.96), mean=0, varcovM=diag(1), Log=FALSE),
               times=10000L)
}else{
cat("package 'microbenchmark' not available\n")
}

C++ implementation of multivariate skew normal likelihood function for multiple inputs

Description

C++ implementation of multivariate skew normal likelihood function for multiple inputs

Usage

mvsnlikC(x, c, clustval, xi, psi, sigma, loglik = TRUE)

Arguments

x

data matrix of dimension p x n, p being the dimension of the data and n the number of data points

c

integer vector of cluster allocations with values from 1 to K

clustval

vector of unique values from c in the order corresponding to the storage of cluster parameters in xi, psi, and sigma

xi

mean vectors matrix of dimension p x K, K being the number of clusters

psi

skew parameter vectors matrix of dimension p x K

sigma

list of length K of variance-covariance matrices, each of dimensions p x p.

loglik

logical flag or returning the log-likelihood instead of the likelihood. Default is TRUE.

Value

a list:

"indiv":

vector of likelihood of length n;

"clust":

vector of likelihood of length K;

"total":

total (log)-likelihood;

Author(s)

Boris Hejblum


multivariate Skew-Normal probability density function

Description

multivariate Skew-Normal probability density function

Usage

mvsnpdf(x, xi, sigma, psi, Log = TRUE)

Arguments

x

p x n data matrix with n the number of observations and p the number of dimensions

xi

mean vector or list of mean vectors (either a vector, a matrix or a list)

sigma

variance-covariance matrix or list of variance-covariance matrices (either a matrix or a list)

psi

skew parameter vector or list of skew parameter vectors (either a vector, a matrix or a list)

Log

logical flag for returning the log of the probability density function. Defaults is TRUE.

See Also

mvnpdf, mmvsnpdfC

Examples

mvnpdf(x=matrix(1.96), mean=0, varcovM=diag(1), Log=FALSE)
dnorm(1.96)
mvsnpdf(x=matrix(rep(1.96,1), nrow=1, ncol=1),
      xi=c(0), psi=c(0), sigma=diag(1),
      Log=FALSE
)

mvsnpdf(x=matrix(rep(1.96,2), nrow=2, ncol=1),
      xi=c(0, 0), psi=c(1, 1), sigma=diag(2)
)

N=50000#00
Yn <- rnorm(n=N, mean=0, sd=1)

Z <- rtruncnorm(n=N, a=0, b=Inf, mean=0, sd=1)
eps <- rnorm(n=N, mean=0, sd=1)
psi <- 10
Ysn <- psi*Z + eps

nu <- 1.5
W <- rgamma(n=N, shape=nu/2, rate=nu/2)
Yst=Ysn/sqrt(W)

library(reshape2)
library(ggplot2)
data2plot <- melt(cbind.data.frame(Ysn, Yst))
#pdf(file="ExSNST.pdf", height=5, width=4)
p <- (ggplot(data=data2plot)
     + geom_density(aes(x=value, fill=variable, alpha=variable), col="black")#, lwd=1.1)
     + theme_bw()
     + xlim(-15,100)
     + theme(legend.position="bottom")
     + scale_fill_manual(values=alpha(c("#F8766D", "#00B0F6"),c(0.2,0.45)),
                         name =" ",
                         labels=c("Y~SN(0,1,10)      ", "Y~ST(0,1,10,1.5)")
     )
     + scale_alpha_manual(guide=FALSE, values=c(0.25, 0.45))
     + xlab("Y")
     + ylim(0,0.08)
     + ylab("Density")
     + guides(fill = guide_legend(override.aes = list(colour = NULL)))
     + theme(legend.key = element_rect(colour = "black"))
)
p
#dev.off()

C++ implementation of multivariate skew t likelihood function for multiple inputs

Description

C++ implementation of multivariate skew t likelihood function for multiple inputs

Usage

mvstlikC(x, c, clustval, xi, psi, sigma, df, loglik = TRUE)

Arguments

x

data matrix of dimension p x n, p being the dimension of the data and n the number of data points

c

integer vector of cluster allocations with values from 1 to K

clustval

vector of unique values from c in the order corresponding to the storage of cluster parameters in xi, psi, and sigma

xi

mean vectors matrix of dimension p x K, K being the number of clusters

psi

skew parameter vectors matrix of dimension p x K

sigma

list of length K of variance-covariance matrices, each of dimensions p x p.

df

vector of length K of degree of freedom parameters.

loglik

logical flag or returning the log-likelihood instead of the likelihood. Default is TRUE.

Value

a list:

"indiv":

vector of likelihood of length n;

"clust":

vector of likelihood of length K;

"total":

total (log)-likelihood;

Author(s)

Boris Hejblum


multivariate skew-t probability density function

Description

multivariate skew-t probability density function

Usage

mvstpdf(x, xi, sigma, psi, df, Log = TRUE)

Arguments

x

p x n data matrix with n the number of observations and p the number of dimensions

xi

mean vector or list of mean vectors (either a vector, a matrix or a list)

sigma

variance-covariance matrix or list of variance-covariance matrices (either a matrix or a list)

psi

skew parameter vector or list of skew parameter vectors (either a vector, a matrix or a list)

df

a numeric vector or a list of the degrees of freedom (either a vector or a list)

Log

logical flag for returning the log of the probability density function. Defaults is TRUE.

See Also

mvtpdf, mvsnpdf, mmvstpdfC, mvstlikC

Examples

mvstpdf(x=matrix(rep(1.96,2), nrow=2, ncol=1),
      xi=c(0, 0), psi=c(1, 1), sigma=diag(2),
      df=100000000, Log=FALSE
)
mvsnpdf(x=matrix(rep(1.96,2), nrow=2, ncol=1),
      xi=c(0, 0), psi=c(1, 1), sigma=diag(2),
      Log=FALSE
)
mvstpdf(x=matrix(rep(1.96,2), nrow=2, ncol=1),
      xi=c(0, 0), psi=c(1, 1), sigma=diag(2),
      df=100000000
)
mvsnpdf(x=matrix(rep(1.96,2), nrow=2, ncol=1),
      xi=c(0, 0), psi=c(1, 1), sigma=diag(2)
)

multivariate Student's t-distribution probability density function

Description

multivariate Student's t-distribution probability density function

Usage

mvtpdf(x, mean, varcovM, df, Log = TRUE)

Arguments

x

p x n data matrix with n the number of observations and p the number of dimensions

mean

mean vector or list of mean vectors (either a vector, a matrix or a list)

varcovM

variance-covariance matrix or list of variance-covariance matrices (either a matrix or a list)

df

a numeric vector or a list of the degrees of freedom (either a vector or a list)

Log

logical flag for returning the log of the probability density function. Defaults is TRUE.

Examples

mvtpdf(x=matrix(1.96), mean=0, varcovM=diag(1), df=10000000)
mvnpdf(x=matrix(1.96), mean=0, varcovM=diag(1))

mvtpdf(x=matrix(1.96), mean=0, varcovM=diag(1), df=10)

mvtpdf(x=matrix(rep(1.96,2), nrow=2, ncol=1),
      mean=c(0, 0), varcovM=diag(2), df=10
)

C++ implementation of similarity matrix computation using pre-computed distances

Description

C++ implementation of similarity matrix computation using pre-computed distances

Usage

NuMatParC(c, d)

Arguments

c

an MCMC partitions of length n.

d

a symmetric n x n matrix containing distances between each group distributions.

Author(s)

Boris Hejblum, Chariff Alkhassim

Examples

c <- c(1,1,2,3,2,3)
d <- matrix(runif(length(c)^2),length(c))
NuMatParC(c,d)

Convergence diagnostic plots

Description

Convergence diagnostic plots

Usage

plot_ConvDPM(
  MCMCsample,
  from = 1,
  to = length(MCMCsample$logposterior_list),
  shift = 0,
  thin = 1,
  ...
)

Arguments

MCMCsample

a DPMMclust or summaryDPMMclust object.

from

the MCMC iteration from which the plot should start. Default is 1.

to

the MCMC iteration up until which the plot should stop. Default is 1.

shift

a number of initial iterations not to be displayed. Default is 0.

thin

integer giving the spacing at which MCMC iterations are kept. Default is 1, i.e. no thining.

...

further arguments passed to or from other methods


Plot of a Dirichlet process mixture of gaussian distribution partition

Description

Plot of a Dirichlet process mixture of gaussian distribution partition

Usage

plot_DPM(
  z,
  U_mu = NULL,
  U_Sigma = NULL,
  m,
  c,
  i,
  alpha = "?",
  U_SS = NULL,
  dims2plot = 1:nrow(z),
  ellipses = ifelse(length(dims2plot) < 3, TRUE, FALSE),
  gg.add = list(theme())
)

Arguments

z

data matrix d x n with d dimensions in rows and n observations in columns.

U_mu

either a list or a matrix containing the current estimates of mean vectors of length d for each cluster. Default is NULL in which case U_SS has to be provided.

U_Sigma

either a list or an array containing the d x d current estimates for covariance matrix of each cluster. Default is NULL in which case U_SS has to be provided.

m

vector of length n containing the number of observations currently assigned to each clusters.

c

allocation vector of length n indicating which observation belongs to which clusters.

i

current MCMC iteration number.

alpha

current value of the DP concentration parameter.

U_SS

a list containing "mu" and "S". Default is NULL in which case U_mu and U_Sigma have to be provided.

dims2plot

index vector, subset of 1:d indicating which dimensions should be drawn. Default is all of them.

ellipses

a logical flag indicating whether ellipses should be drawn around clusters. Default is TRUE if only 2 dimensions are plotted, FALSE otherwise.

gg.add

a list of instructions to add to the ggplot2 instruction (see gg-add). Default is list(theme()), which adds nothing to the plot.

Author(s)

Boris Hejblum


Plot of a Dirichlet process mixture of skew normal distribution partition

Description

Plot of a Dirichlet process mixture of skew normal distribution partition

Usage

plot_DPMsn(
  z,
  c,
  i = "",
  alpha = "?",
  U_SS,
  dims2plot = 1:nrow(z),
  ellipses = ifelse(length(dims2plot) < 3, TRUE, FALSE),
  gg.add = list(theme()),
  nbsim_dens = 1000
)

Arguments

z

data matrix d x n with d dimensions in rows and n observations in columns.

c

allocation vector of length n indicating which observation belongs to which clusters.

i

current MCMC iteration number.

alpha

current value of the DP concentration parameter.

U_SS

a list containing "xi", "psi", "S", and "df".

dims2plot

index vector, subset of 1:d indicating which dimensions should be drawn. Default is all of them.

ellipses

a logical flag indicating whether ellipses should be drawn around clusters. Default is TRUE if only 2 dimensions are plotted, FALSE otherwise.

gg.add

A list of instructions to add to the ggplot2 instruction (see gg-add). Default is list(theme()), which adds nothing to the plot.

nbsim_dens

number of simulated points used for computing clusters density contours in 2D plots. Default is 1000 points.

Author(s)

Boris Hejblum


Plot of a Dirichlet process mixture of skew t-distribution partition

Description

Plot of a Dirichlet process mixture of skew t-distribution partition

Usage

plot_DPMst(
  z,
  c,
  i = "",
  alpha = "?",
  U_SS,
  dims2plot = 1:nrow(z),
  ellipses = ifelse(length(dims2plot) < 3, TRUE, FALSE),
  gg.add = list(theme()),
  nbsim_dens = 1000,
  nice = FALSE
)

Arguments

z

data matrix d x n with d dimensions in rows and n observations in columns.

c

allocation vector of length n indicating which observation belongs to which clusters.

i

current MCMC iteration number.

alpha

current value of the DP concentration parameter.

U_SS

a list containing "xi", "psi", "S", and "df".

dims2plot

index vector, subset of 1:d indicating which dimensions should be drawn. Default is all of them.

ellipses

a logical flag indicating whether ellipses should be drawn around clusters. Default is TRUE if only 2 dimensions are plotted, FALSE otherwise.

gg.add

A list of instructions to add to the ggplot2 instruction (see gg-add). Default is list(theme()), which adds nothing to the plot.

nbsim_dens

number of simulated points used for computing clusters density contours in 2D plots. Default is 1000 points.

nice

logical flag changing the plot looks. Default is FALSE.

Author(s)

Boris Hejblum


Post-processing Dirichlet Process Mixture Models results to get a mixture distribution of the posterior locations

Description

Post-processing Dirichlet Process Mixture Models results to get a mixture distribution of the posterior locations

Usage

postProcess.DPMMclust(
  x,
  burnin = 0,
  thin = 1,
  gs = NULL,
  lossFn = "F-measure",
  K = 10,
  ...
)

Arguments

x

a DPMMclust object.

burnin

integer giving the number of MCMC iterations to burn (defaults is half)

thin

integer giving the spacing at which MCMC iterations are kept. Default is 1, i.e. no thining.

gs

optional vector of length n containing the gold standard partition of the n observations to compare to the point estimate.

lossFn

character string specifying the loss function to be used. Either "F-measure" or "Binder" (see Details). Default is "F-measure".

K

integer giving the number of mixture components. Default is 10.

...

further arguments passed to or from other methods

Details

The cost of a point estimate partition is calculated using either a pairwise coincidence loss function (Binder), or 1-Fmeasure (F-measure).

Value

a list:

burnin:

an integer passing along the burnin argument

thin:

an integer passing along the thin argument

lossFn:

a character string passing along the lossFn argument

point_estim:
loss:
index_estim:

Author(s)

Boris Hejblum

See Also

similarityMat summary.DPMMclust


Methods for a summary of a DPMMclust object

Description

Methods for a summary of a DPMMclust object

Usage

## S3 method for class 'summaryDPMMclust'
print(x, ...)

## S3 method for class 'summaryDPMMclust'
plot(
  x,
  hm = FALSE,
  nbsim_densities = 5000,
  hm_subsample = NULL,
  hm_order_by_clust = TRUE,
  gg.add = list(theme_bw()),
  ...
)

Arguments

x

a summaryDPMMclust object.

...

further arguments passed to or from other methods

hm

logical flag to plot the heatmap of the similarity matrix. Default is FALSE.

nbsim_densities

the number of simulated observations to be used to plot the density lines of the clusters in the point estimate partition plot

hm_subsample

a integer designating the number of observations to use when plotting the heatmap. Used only if hm is TRUE. #'Default is NULL in which no subsampling is done and all observations are plotted.

hm_order_by_clust

logical flag indicating whether observations should be ordered according to the point estimate first. Used only if hm is TRUE. Default is TRUE.

gg.add

a list of instructions to add to the ggplot2 instruction (see gg-add). Default is list(theme()), which adds nothing to the plot.

Author(s)

Boris Hejblum


Construction of an Empirical based prior

Description

Construction of an Empirical based prior

Usage

priormix(sDPMclust, nu0add = 5)

Arguments

sDPMclust

an object of class summary.DPMMclust

nu0add

an additional value integer added to hyperprior parameter nu (increase to avoid non positive definite matrix sampling)

See Also

summary.DPMMclust

Examples

rm(list=ls())

#Number of data
n <- 2000
set.seed(123)
#set.seed(4321)


d <- 2
ncl <- 4

# Sample data

sdev <- array(dim=c(d,d,ncl))

xi <- matrix(nrow=d, ncol=ncl, c(-1.5, 1.5, 1.5, 1.5, 2, -2.5, -2.5, -3))
#xi <- matrix(nrow=d, ncol=ncl, c(-0.5, 0, 0.5, 0, 0.5, -1, -1, 1))
psi <- matrix(nrow=d, ncol=4, c(0.4, -0.6, 0.8, 0, 0.3, -0.7, -0.3, -0.8))
nu <- c(100,15,8,5)
p <- c(0.15, 0.05, 0.5, 0.3) # frequence des clusters
sdev[, ,1] <- matrix(nrow=d, ncol=d, c(0.3, 0, 0, 0.3))
sdev[, ,2] <- matrix(nrow=d, ncol=d, c(0.1, 0, 0, 0.3))
sdev[, ,3] <- matrix(nrow=d, ncol=d, c(0.3, 0.15, 0.15, 0.3))
sdev[, ,4] <- .3*diag(2)


c <- rep(0,n)
w <- rep(1,n)
z <- matrix(0, nrow=d, ncol=n)
for(k in 1:n){
 c[k] = which(rmultinom(n=1, size=1, prob=p)!=0)
 w[k] <- rgamma(1, shape=nu[c[k]]/2, rate=nu[c[k]]/2)
 z[,k] <- xi[, c[k]] + psi[, c[k]]*rtruncnorm(n=1, a=0, b=Inf, mean=0, sd=1/sqrt(w[k])) +
                (sdev[, , c[k]]/sqrt(w[k]))%*%matrix(rnorm(d, mean = 0, sd = 1), nrow=d, ncol=1)
 #cat(k, "/", n, " observations simulated\n", sep="")
}

# Set parameters of G0
hyperG0 <- list()
hyperG0[["b_xi"]] <- rowMeans(z)
hyperG0[["b_psi"]] <- rep(0,d)
hyperG0[["kappa"]] <- 0.001
hyperG0[["D_xi"]] <- 100
hyperG0[["D_psi"]] <- 100
hyperG0[["nu"]] <- d+1
hyperG0[["lambda"]] <- diag(apply(z,MARGIN=1, FUN=var))/3

 # hyperprior on the Scale parameter of DPM
 a <- 0.0001
 b <- 0.0001

 nbclust_init <- 30

if(interactive()){
 MCMCsample_st <- DPMGibbsSkewT(z, hyperG0, a, b, N=2000, doPlot=FALSE,
                                nbclust_init, diagVar=FALSE)
 s <- summary(MCMCsample_st, burnin = 1500, thin=5, posterior_approx=TRUE)
 pmix <- priormix(s)
}

Generating cluster data from the Chinese Restaurant Process

Description

Generating cluster data from the Chinese Restaurant Process

Usage

rCRP(n = 1000, alpha = 2, hyperG0, verbose = TRUE)

Arguments

n

number of observations

alpha

concentration parameter

hyperG0

base distribution hyperparameter

verbose

logical flag indicating whether info is written in the console.

Examples

rm(list=ls())

d=2
hyperG0 <- list()
hyperG0[["NNiW"]] <- list()
hyperG0[["NNiW"]][["b_xi"]] <- rep(0,d)
hyperG0[["NNiW"]][["b_psi"]] <- rep(0,d)
hyperG0[["NNiW"]][["D_xi"]] <- 100
hyperG0[["NNiW"]][["D_psi"]] <- 8
hyperG0[["NNiW"]][["nu"]] <- d+1
hyperG0[["NNiW"]][["lambda"]] <- diag(c(1,1))

hyperG0[["scale"]] <- list()

set.seed(4321)
N <- 200
alph <- runif(n=1,0.2,2)
GvHD_sims <- rCRP(n=2*N, alpha=alph, hyperG0=hyperG0)
library(ggplot2)
q <- (ggplot(data=cbind.data.frame("D1"=GvHD_sims$data[1,],
                                  "D2"=GvHD_sims$data[2,],
                                  "Cluster"=GvHD_sims$cluster),
             aes(x=D1, y=D2))
      + geom_point(aes(colour=Cluster), alpha=0.6)
      + theme_bw()
      )
q
#q + stat_density2d(alpha=0.15, geom="polygon")

if(interactive()){
MCMCy1 <- DPMGibbsSkewT(z=GvHD_sims$data[,1:N],
                        hyperG0$NNiW, a=0.0001, b=0.0001, N=5000,
                        doPlot=TRUE, nbclust_init=64, plotevery=500,
                        gg.add=list(theme_bw()), diagVar=FALSE)
 s1 <- summary(MCMCy1, burnin=4000, thin=5,
               posterior_approx=TRUE)
 F1 <- FmeasureC(ref=GvHD_sims$cluster[1:N], pred=s1$point_estim$c_est)

 # s <- summary(MCMCy1, burnin=4000, thin=5,
 #               posterior_approx=TRUE, K=1)
 # s2 <- summary(MCMCy1, burnin=4000, thin=5,
 #               posterior_approx=TRUE, K=2)
 # MCMCy2_seqPost<- DPMGibbsSkewT(z=GvHD_sims$data[,(N+1):(2*N)],
 #                                  hyperG0=s1$param_post$parameters,
 #                                  a=s1$param_post$alpha_param$shape,
 #                                  b=s1$param_post$alpha_param$rate,
 #                                  N=5000, doPlot=TRUE, nbclust_init=64, plotevery=500,
 #                                  gg.add=list(theme_bw()), diagVar=FALSE)

 MCMCy2_seqPost <- DPMGibbsSkewT_SeqPrior(z=GvHD_sims$data[,(N+1):(2*N)],
                                           prior=s1$param_post, hyperG0=hyperG0$NNiW, , N=1000,
                                           doPlot=TRUE, nbclust_init=10, plotevery=100,
                                           gg.add=list(theme_bw()), diagVar=FALSE)
 s2_seqPost <- summary(MCMCy2_seqPost, burnin=600, thin=2)
 F2_seqPost <- FmeasureC(ref=GvHD_sims$cluster[(N+1):(2*N)], pred=s2_seqPost$point_estim$c_est)

 MCMCy2 <- DPMGibbsSkewT(z=GvHD_sims$data[,(N+1):(2*N)],
                         hyperG0$NNiW, a=0.0001, b=0.0001, N=5000,
                         doPlot=TRUE, nbclust_init=64, plotevery=500,
                         gg.add=list(theme_bw()), diagVar=FALSE)
 s2 <- summary(MCMCy2, burnin=4000, thin=5)
 F2 <- FmeasureC(ref=GvHD_sims$cluster[(N+1):(2*N)], pred=s2$point_estim$c_est)

 MCMCtot <- DPMGibbsSkewT(z=GvHD_sims$data,
                          hyperG0$NNiW, a=0.0001, b=0.0001, N=5000,
                          doPlot=TRUE, nbclust_init=10, plotevery=500,
                          gg.add=list(theme_bw()), diagVar=FALSE)
 stot <- summary(MCMCtot, burnin=4000, thin=5)
 F2tot <- FmeasureC(ref=GvHD_sims$cluster[(N+1):(2*N)], pred=stot$point_estim$c_est[(N+1):(2*N)])

 c(F1, F2, F2_seqPost, F2tot)
}

Sampler for the concentration parameter of a Dirichlet process

Description

Sampler updating the concentration parameter of a Dirichlet process given the number of observations and a Gamma(a, b) prior, following the augmentation strategy of West, and of Escobar and West.

Usage

sample_alpha(alpha_old, n, K, a = 1e-04, b = 1e-04)

Arguments

alpha_old

the current value of alpha

n

the number of data points

K

current number of cluster

a

shape hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001.

b

scale hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001. If 0 then the concentration is fixed and this function returns a.

Details

A Gamma prior is used.

References

M West, Hyperparameter estimation in Dirichlet process mixture models, Technical Report, Duke University, 1992.

MD Escobar, M West, Bayesian Density Estimation and Inference Using Mixtures Journal of the American Statistical Association, 90(430):577-588, 1995.

Examples

#Test with a fixed K
####################

alpha_init <- 1000
N <- 10000
#n=500
n=10000
K <- 80
a <- 0.0001
b <- a
alphas <- numeric(N)
alphas[1] <- alpha_init
for (i in 2:N){
 alphas[i] <- sample_alpha(alpha_old = alphas[i-1], n=n, K=K, a=a, b=b)
}

postalphas <- alphas[floor(N/2):N]
alphaMMSE <- mean(postalphas)
alphaMAP <- density(postalphas)$x[which.max(density(postalphas)$y)]

expK <- sum(alphaMMSE/(alphaMMSE+0:(n-1)))
round(expK)


 prioralpha <- data.frame("alpha"=rgamma(n=5000, a,1/b),
                         "distribution" =factor(rep("prior",5000),
                         levels=c("prior", "posterior")))

 library(ggplot2)
 p <- (ggplot(prioralpha, aes(x=alpha))
       + geom_histogram(aes(y=..density..),
                        colour="black", fill="white")
       + geom_density(alpha=.2, fill="red")
       + ggtitle(paste("Prior distribution on alpha: Gamma(", a,
                 ",", b, ")\n", sep=""))
      )
 p

postalpha.df <- data.frame("alpha"=postalphas,
                         "distribution" = factor(rep("posterior",length(postalphas)),
                         levels=c("prior", "posterior")))
 p <- (ggplot(postalpha.df, aes(x=alpha))
       + geom_histogram(aes(y=..density..), binwidth=.1,
                        colour="black", fill="white")
       + geom_density(alpha=.2, fill="blue")
       + ggtitle("Posterior distribution of alpha\n")
       # Ignore NA values for mean
       # Overlay with transparent density plot
       + geom_vline(aes(xintercept=mean(alpha, na.rm=TRUE)),
                    color="red", linetype="dashed", size=1)
     )
 p

Computes the co-clustering (or similarity) matrix

Description

Computes the co-clustering (or similarity) matrix

Usage

similarityMat(c, step = 1)

Arguments

c

a list of vector of length n. c[[j]][i] is the cluster allocation of observation i=1...n at iteration j=1...N.

step

provide co-clustering every step iterations. Default is 1.

Value

A matrix of size n x n whose term [i,j] is the proportion of MCMC iterations where observation i and observations j are allocated to the same cluster.

Author(s)

Boris Hejblum


C++ implementation

Description

C++ implementation

Usage

similarityMat_nocostC(cc)

Arguments

cc

a matrix whose columns each represents a ()MCMC) partition

Examples

c <- list(c(1,1,2,3,2,3), c(1,1,1,2,3,3),c(2,2,1,1,1,1))
similarityMat_nocostC(sapply(c, "["))

c2 <- list()
for(i in 1:10){
    c2 <- c(c2, list(rmultinom(n=1, size=1000, prob=rexp(n=1000))))
}

c3 <- sapply(c2, "[")

if(require(microbenchmark)){
library(microbenchmark)
microbenchmark(similarityMat(c3), similarityMat_nocostC(c3), times=2L)
}else{
cat("package 'microbenchmark' not available\n")
}

C++ implementation

Description

C++ implementation

Usage

similarityMatC(cc)

Arguments

cc

a matrix whose columns each represents a (MCMC) partition

Examples

c <- list(c(1,1,2,3,2,3), c(1,1,1,2,3,3),c(2,2,1,1,1,1))
similarityMatC(sapply(c, "["))

c2 <- list()
for(i in 1:10){
    c2 <- c(c2, list(rmultinom(n=1, size=200, prob=rexp(n=200))))
}
similarityMatC(sapply(c2, "["))

Summarizing Dirichlet Process Mixture Models

Description

Summary methods for DPMMclust objects.

Usage

## S3 method for class 'DPMMclust'
summary(
  object,
  burnin = 0,
  thin = 1,
  gs = NULL,
  lossFn = "Binder",
  posterior_approx = FALSE,
  ...
)

Arguments

object

a DPMMclust object.

burnin

integer giving the number of MCMC iterations to burn (defaults is half)

thin

integer giving the spacing at which MCMC iterations are kept. Default is 1, i.e. no thining.

gs

optional vector of length n containing the gold standard partition of the n observations to compare to the point estimate

lossFn

character string specifying the loss function to be used. Either "F-measure" or "Binder" (see Details). Default is "Binder".

posterior_approx

logical flag whether a parametric approximation of the posterior should be computed. Default is FALSE

...

further arguments passed to or from other methods

Details

The cost of a point estimate partition is calculated using either a pairwise coincidence loss function (Binder), or 1-Fmeasure (F-measure).

The number of retained sampled partitions is m = (N - burnin)/thin

Value

a list containing the following elements:

nb_mcmcit:

an integer giving the value of m, the number of retained sampled partitions, i.e. (N - burnin)/thin

burnin:

an integer passing along the burnin argument

thin:

an integer passing along the thin argument

lossFn:

a character string passing along the lossFn argument

clust_distrib:

a character string passing along the clust_distrib argument

point_estim:

a list containing:

c_est:

a vector of length ncontaining the point estimated clustering for each observations

cost:

a vector of length m containing the cost of each sampled partition

Fmeas:

if lossFn is 'F-measure', the m x m matrix of total F-measures for each pair of sampled partitions

opt_ind:

the index of the point estimate partition among the m sampled

loss:

the loss for the point estimate. NA if lossFn is not 'Binder'

param_posterior:

a list containing the parametric approximation of the posterior, suitable to be plugged in as prior for a new MCMC algorithm run

mcmc_partitions:

a list containing the m sampled partitions

alpha:

a vector of length m with the values of the alpha DP parameter

index_estim:

the index of the point estimate partition among the m sampled

hyperG0:

a list passing along the prior, i.e. the hyperG0 argument

logposterior_list:

a list of length m containing the logposterior and its decomposition, for each sampled partition

U_SS_list:

a list of length m containing the containing the lists of sufficient statistics for all the mixture components, for each sampled partition

data:

a d x n matrix containing the clustered data

Author(s)

Boris Hejblum

See Also

similarityMat similarityMatC


C++ implementation

Description

C++ implementation

Usage

vclust2mcoclustC(c)

Arguments

c

is an MCMC partition

Author(s)

Chariff Alkhassim

Examples

cc <- c(1,1,2,3,2,3)
vclust2mcoclustC(cc)