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DataLongGenerator Longitudinal data generator

Description

Simulate longitudinal data according to the semi-parametric stochastic mixed-effects model given
by:

Yi(t) = f(Xi(t)) + Zi(t)βi + ωi(t) + ϵi

with Yi(t) the output at time t for the ith individual; Xi(t) the input predictors (fixed effects) at
time t for the ith individual; Zi(t) are the random effects at time t for the ith individual; ωi(t) is
a Brownian motion with volatility γ2 = 0.8 at time t for the ith individual; ϵi is the residual error
with variance σ2 = 0.5. The data are simulated according to the simulations in low dimensional in
the low dimensional scheme of the paper <doi:10.1177/0962280220946080>

Usage

DataLongGenerator(n = 50, p = 6, G = 6)

Arguments

n [numeric]: Number of individuals. The default value is n=50.

p [numeric]: Number of predictors. The default value is p=6.

G [numeric]: Number of groups of predictors with temporal behavior, generates
p-G input variables with no temporal behavior.

Value

a list of the following elements:

• Y: vector of the output trajectories.

• X : matrix of the fixed-effects predictors.

• Z: matrix of the random-effects predictors.

• id: vector of the identifiers for each individual.

• time: vector the the time measurements for each individual.
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Examples

oldpar <- par()
oldopt <- options()
data <- DataLongGenerator(n=17, p=6,G=6) # Generate the data
# Let's see the output :
w <- which(data$id==1)
plot(data$time[w],data$Y[w],type="l",ylim=c(min(data$Y),max(data$Y)), col="grey")
for (i in unique(data$id)){

w <- which(data$id==i)
lines(data$time[w],data$Y[w], col='grey')

}
# Let's see the fixed effects predictors:
par(mfrow=c(2,3), mar=c(2,3,3,2))
for (i in 1:ncol(data$X)){

w <- which(data$id==1)
plot(data$time[w],data$X[w,i], col="grey",ylim=c(min(data$X[,i]),
max(data$X[,i])),xlim=c(1,max(data$time)),main=latex2exp::TeX(paste0("$X^{(",i,")}$")))
for (k in unique(data$id)){
w <- which(data$id==k)
lines(data$time[w],data$X[w,i], col="grey")

}
}
par(oldpar)
options(oldopt)

MERF (S)MERF algorithm

Description

(S)MERF is an adaptation of the random forest regression method to longitudinal data introduced
by Hajjem et. al. (2014) <doi:10.1080/00949655.2012.741599>. The model has been improved
by Capitaine et. al. (2020) <doi:10.1177/0962280220946080> with the addition of a stochastic
process. The algorithm will estimate the parameters of the following semi-parametric stochastic
mixed-effects model:

Yi(t) = f(Xi(t)) + Zi(t)βi + ωi(t) + ϵi

with Yi(t) the output at time t for the ith individual; Xi(t) the input predictors (fixed effects) at
time t for the ith individual; Zi(t) are the random effects at time t for the ith individual; ωi(t) is the
stochastic process at time t for the ith individual which model the serial correlations of the output
measurements; ϵi is the residual error.

Usage

MERF(
X,
Y,
id,



4 MERF

Z,
iter = 100,
mtry = ceiling(ncol(X)/3),
ntree = 500,
time,
sto,
delta = 0.001

)

Arguments

X [matrix]: A Nxp matrix containing the p predictors of the fixed effects, column
codes for a predictor.

Y [vector]: A vector containing the output trajectories.

id [vector]: Is the vector of the identifiers for the different trajectories.

Z [matrix]: A Nxq matrix containing the q predictor of the random effects.

iter [numeric]: Maximal number of iterations of the algorithm. The default is set to
iter=100

mtry [numeric]: Number of variables randomly sampled as candidates at each split.
The default value is p/3.

ntree [numeric]: Number of trees to grow. This should not be set to too small a
number, to ensure that every input row gets predicted at least a few times. The
default value is ntree=500.

time [vector]: Is the vector of the measurement times associated with the trajectories
in Y,Z and X.

sto [character]: Defines the covariance function of the stochastic process, can be
either "none" for no stochastic process, "BM" for Brownian motion, OrnUhl for
standard Ornstein-Uhlenbeck process, BBridge for Brownian Bridge, fbm for
Fractional Brownian motion; can also be a function defined by the user.

delta [numeric]: The algorithm stops when the difference in log likelihood between
two iterations is smaller than delta. The default value is set to O.O01

Value

A fitted (S)MERF model which is a list of the following elements:

• forest: Random forest obtained at the last iteration.

• random_effects : Predictions of random effects for different trajectories.

• id_btilde: Identifiers of individuals associated with the predictions random_effects.

• var_random_effects: Estimation of the variance covariance matrix of random effects.

• sigma_sto: Estimation of the volatility parameter of the stochastic process.

• sigma: Estimation of the residual variance parameter.

• time: The vector of the measurement times associated with the trajectories in Y,Z and X.

• sto: Stochastic process used in the model.
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• Vraisemblance: Log-likelihood of the different iterations.

• id: Vector of the identifiers for the different trajectories.

• OOB: OOB error of the fitted random forest at each iteration.

Examples

set.seed(123)
data <- DataLongGenerator(n=20) # Generate the data composed by n=20 individuals.
# Train a SMERF model on the generated data. Should take ~ 50 seconds
# The data are generated with a Brownian motion,
# so we use the parameter sto="BM" to specify a Brownian motion as stochastic process
smerf <- MERF(X=data$X,Y=data$Y,Z=data$Z,id=data$id,time=data$time,mtry=2,ntree=500,sto="BM")
smerf$forest # is the fitted random forest (obtained at the last iteration).
smerf$random_effects # are the predicted random effects for each individual.
smerf$omega # are the predicted stochastic processes.
plot(smerf$Vraisemblance) # evolution of the log-likelihood.
smerf$OOB # OOB error at each iteration.

MERT (S)MERT algorithm

Description

(S)MERT is an adaptation of the random forest regression method to longitudinal data introduced by
Hajjem et. al. (2011) <doi:10.1016/j.spl.2010.12.003>. The model has been improved by Capitaine
et. al. (2020) <doi:10.1177/0962280220946080> with the addition of a stochastic process. The
algorithm will estimate the parameters of the following semi-parametric stochastic mixed-effects
model:

Yi(t) = f(Xi(t)) + Zi(t)βi + ωi(t) + ϵi

with Yi(t) the output at time t for the ith individual; Xi(t) the input predictors (fixed effects) at
time t for the ith individual; Zi(t) are the random effects at time t for the ith individual; ωi(t) is the
stochastic process at time t for the ith individual which model the serial correlations of the output
measurements; ϵi is the residual error.

Usage

MERT(X, Y, id, Z, iter = 100, time, sto, delta = 0.001)

Arguments

X [matrix]: A Nxp matrix containing the p predictors of the fixed effects, column
codes for a predictor.

Y [vector]: A vector containing the output trajectories.

id [vector]: Is the vector of the identifiers for the different trajectories.
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Z [matrix]: A Nxq matrix containing the q predictor of the random effects.

iter [numeric]: Maximal number of iterations of the algorithm. The default is set to
iter=100

time [vector]: Is the vector of the measurement times associated with the trajectories
in Y,Z and X.

sto [character]: Defines the covariance function of the stochastic process, can be
either "none" for no stochastic process, "BM" for Brownian motion, OrnUhl for
standard Ornstein-Uhlenbeck process, BBridge for Brownian Bridge, fbm for
Fractional Brownian motion; can also be a function defined by the user.

delta [numeric]: The algorithm stops when the difference in log likelihood between
two iterations is smaller than delta. The default value is set to O.O01

Value

A fitted (S)MERF model which is a list of the following elements:

• forest: Tree obtained at the last iteration.

• random_effects : Predictions of random effects for different trajectories.

• id_btilde: Identifiers of individuals associated with the predictions random_effects.

• var_random_effects: Estimation of the variance covariance matrix of random effects.

• sigma_sto: Estimation of the volatility parameter of the stochastic process.

• sigma: Estimation of the residual variance parameter.

• time: The vector of the measurement times associated with the trajectories in Y,Z and X.

• sto: Stochastic process used in the model.

• Vraisemblance: Log-likelihood of the different iterations.

• id: Vector of the identifiers for the different trajectories.

Examples

set.seed(123)
data <- DataLongGenerator(n=20) # Generate the data composed by n=20 individuals.
# Train a SMERF model on the generated data. Should take ~ 50 secondes
# The data are generated with a Brownian motion,
# so we use the parameter sto="BM" to specify a Brownian motion as stochastic process
smert <- MERF(X=data$X,Y=data$Y,Z=data$Z,id=data$id,time=data$time,sto="BM")
smert$forest # is the fitted random forest (obtained at the last iteration).
smert$random_effects # are the predicted random effects for each individual.
smert$omega # are the predicted stochastic processes.
plot(smert$Vraisemblance) #evolution of the log-likelihood.
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predict.longituRF Predict with longitudinal trees and random forests.

Description

Predict with longitudinal trees and random forests.

Usage

## S3 method for class 'longituRF'
predict(object, X, Z, id, time, ...)

Arguments

object : a longituRF output of (S)MERF; (S)REEMforest; (S)MERT or (S)REEMtree
function.

X [matrix]: matrix of the fixed effects for the new observations to be predicted.

Z [matrix]: matrix of the random effects for the new observations to be predicted.

id [vector]: vector of the identifiers of the new observations to be predicted.

time [vector]: vector of the time measurements of the new observations to be pre-
dicted.

... : low levels arguments.

Value

vector of the predicted output for the new observations.

Examples

set.seed(123)
data <- DataLongGenerator(n=20) # Generate the data composed by n=20 individuals.
REEMF <- REEMforest(X=data$X,Y=data$Y,Z=data$Z,id=data$id,time=data$time,mtry=2,ntree=500,sto="BM")
# Then we predict on the learning sample :
pred.REEMF <- predict(REEMF, X=data$X,Z=data$Z,id=data$id, time=data$time)
# Let's have a look at the predictions
# the predictions are in red while the real output trajectories are in blue:
par(mfrow=c(4,5),mar=c(2,2,2,2))
for (i in unique(data$id)){

w <- which(data$id==i)
plot(data$time[w],data$Y[w],type="l",col="blue")
lines(data$time[w],pred.REEMF[w], col="red")

}
# Train error :
mean((pred.REEMF-data$Y)^2)

# The same function can be used with a fitted SMERF model:
smerf <-MERF(X=data$X,Y=data$Y,Z=data$Z,id=data$id,time=data$time,mtry=2,ntree=500,sto="BM")
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pred.smerf <- predict(smerf, X=data$X,Z=data$Z,id=data$id, time=data$time)
# Train error :
mean((pred.smerf-data$Y)^2)
# This function can be used even on a MERF model (when no stochastic process is specified)
merf <-MERF(X=data$X,Y=data$Y,Z=data$Z,id=data$id,time=data$time,mtry=2,ntree=500,sto="none")
pred.merf <- predict(merf, X=data$X,Z=data$Z,id=data$id, time=data$time)
# Train error :
mean((pred.merf-data$Y)^2)

REEMforest (S)REEMforest algorithm

Description

(S)REEMforest algorithm

Usage

REEMforest(
X,
Y,
id,
Z,
iter = 100,
mtry,
ntree = 500,
time,
sto,
delta = 0.001

)

Arguments

X [matrix]: A Nxp matrix containing the p predictors of the fixed effects, column
codes for a predictor.

Y [vector]: A vector containing the output trajectories.

id [vector]: Is the vector of the identifiers for the different trajectories.

Z [matrix]: A Nxq matrix containing the q predictor of the random effects.

iter [numeric]: Maximal number of iterations of the algorithm. The default is set to
iter=100

mtry [numeric]: Number of variables randomly sampled as candidates at each split.
The default value is p/3.

ntree [numeric]: Number of trees to grow. This should not be set to too small a
number, to ensure that every input row gets predicted at least a few times. The
default value is ntree=500.
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time [time]: Is the vector of the measurement times associated with the trajectories
in Y,Z and X.

sto [character]: Defines the covariance function of the stochastic process, can be
either "none" for no stochastic process, "BM" for Brownian motion, OrnUhl for
standard Ornstein-Uhlenbeck process, BBridge for Brownian Bridge, fbm for
Fractional Brownian motion; can also be a function defined by the user.

delta [numeric]: The algorithm stops when the difference in log likelihood between
two iterations is smaller than delta. The default value is set to O.O01

Details

(S)REEMforest is an adaptation of the random forest regression method to longitudinal data intro-
duced by Capitaine et. al. (2020) <doi:10.1177/0962280220946080>. The algorithm will estimate
the parameters of the following semi-parametric stochastic mixed-effects model:

Yi(t) = f(Xi(t)) + Zi(t)βi + ωi(t) + ϵi

with Yi(t) the output at time t for the ith individual; Xi(t) the input predictors (fixed effects) at
time t for the ith individual; Zi(t) are the random effects at time t for the ith individual; ωi(t) is the
stochastic process at time t for the ith individual which model the serial correlations of the output
measurements; ϵi is the residual error.

Value

A fitted (S)REEMforest model which is a list of the following elements:

• forest: Random forest obtained at the last iteration.

• random_effects : Predictions of random effects for different trajectories.

• id_btilde: Identifiers of individuals associated with the predictions random_effects.

• var_random_effects: Estimation of the variance covariance matrix of random effects.

• sigma_sto: Estimation of the volatility parameter of the stochastic process.

• sigma: Estimation of the residual variance parameter.

• time: The vector of the measurement times associated with the trajectories in Y,Z and X.

• sto: Stochastic process used in the model.

• Vraisemblance: Log-likelihood of the different iterations.

• id: Vector of the identifiers for the different trajectories.

• OOB: OOB error of the fitted random forest at each iteration.

Examples

set.seed(123)
data <- DataLongGenerator(n=20) # Generate the data composed by n=20 individuals.
# Train a SREEMforest model on the generated data. Should take ~ 50 secondes
# The data are generated with a Brownian motion
# so we use the parameter sto="BM" to specify a Brownian motion as stochastic process
SREEMF <- REEMforest(X=data$X,Y=data$Y,Z=data$Z,id=data$id,time=data$time,mtry=2,ntree=500,sto="BM")
SREEMF$forest # is the fitted random forest (obtained at the last iteration).
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SREEMF$random_effects # are the predicted random effects for each individual.
SREEMF$omega # are the predicted stochastic processes.
plot(SREEMF$Vraisemblance) #evolution of the log-likelihood.
SREEMF$OOB # OOB error at each iteration.

REEMtree (S)REEMtree algorithm

Description

(S)REEMtree is an adaptation of the random forest regression method to longitudinal data intro-
duced by Sela and Simonoff. (2012) <doi:10.1007/s10994-011-5258-3>. The algorithm will esti-
mate the parameters of the following semi-parametric stochastic mixed-effects model:

Yi(t) = f(Xi(t)) + Zi(t)βi + ωi(t) + ϵi

with Yi(t) the output at time t for the ith individual; Xi(t) the input predictors (fixed effects) at
time t for the ith individual; Zi(t) are the random effects at time t for the ith individual; ωi(t) is the
stochastic process at time t for the ith individual which model the serial correlations of the output
measurements; ϵi is the residual error.

Usage

REEMtree(X, Y, id, Z, iter = 10, time, sto, delta = 0.001)

Arguments

X [matrix]: A Nxp matrix containing the p predictors of the fixed effects, column
codes for a predictor.

Y [vector]: A vector containing the output trajectories.

id [vector]: Is the vector of the identifiers for the different trajectories.

Z [matrix]: A Nxq matrix containing the q predictor of the random effects.

iter [numeric]: Maximal number of iterations of the algorithm. The default is set to
iter=100

time [vector]: Is the vector of the measurement times associated with the trajectories
in Y,Z and X.

sto [character]: Defines the covariance function of the stochastic process, can be
either "none" for no stochastic process, "BM" for Brownian motion, OrnUhl for
standard Ornstein-Uhlenbeck process, BBridge for Brownian Bridge, fbm for
Fractional Brownian motion; can also be a function defined by the user.

delta [numeric]: The algorithm stops when the difference in log likelihood between
two iterations is smaller than delta. The default value is set to O.O01
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Value

A fitted (S)MERF model which is a list of the following elements:

• forest: Tree obtained at the last iteration.

• random_effects : Predictions of random effects for different trajectories.

• id_btilde: Identifiers of individuals associated with the predictions random_effects.

• var_random_effects: Estimation of the variance covariance matrix of random effects.

• sigma_sto: Estimation of the volatility parameter of the stochastic process.

• sigma: Estimation of the residual variance parameter.

• time: The vector of the measurement times associated with the trajectories in Y,Z and X.

• sto: Stochastic process used in the model.

• Vraisemblance: Log-likelihood of the different iterations.

• id: Vector of the identifiers for the different trajectories.

Examples

set.seed(123)
data <- DataLongGenerator(n=20) # Generate the data composed by n=20 individuals.
# Train a SREEMtree model on the generated data.
# The data are generated with a Brownian motion,
# so we use the parameter sto="BM" to specify a Brownian motion as stochastic process
X.fixed.effects <- as.data.frame(data$X)
sreemt <- REEMtree(X=X.fixed.effects,Y=data$Y,Z=data$Z,id=data$id,time=data$time,
sto="BM", delta=0.0001)
sreemt$forest # is the fitted random forest (obtained at the last iteration).
sreemt$random_effects # are the predicted random effects for each individual.
sreemt$omega # are the predicted stochastic processes.
plot(sreemt$Vraisemblance) #evolution of the log-likelihood.

Stability_Score Stability score function for (S)MERF and (S)REEMforest methods

Description

Computes the stability scores for (S)MERF and (S)REEMforest methods.

Usage

Stability_Score(
X,
Y,
Z,
id,
time,
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mtry,
ntree,
sto = "BM",
method = "MERF",
eta = c(1:ncol(X)),
nvars = c(1:ncol(X))

)

Arguments

X [matrix]: A Nxp matrix containing the p predictors of the fixed effects, column
codes for a predictor.

Y [vector]: A vector containing the output trajectories.

Z [matrix]: A Nxq matrix containing the q predictor of the random effects.

id [vector]: Is the vector of the identifiers for the different trajectories.

time [vector]: Is the vector of the measurement times associated with the trajectories
in Y,Z and X.

mtry [numeric]: Number of variables ramdomly picked to split each node.

ntree [numeric]: Number of trees in the RF.

sto [string]: Defines the covariance function of the stochastic process, can be ei-
ther "none" for no stochastic process, "BM" for Brownian motion, OrnUhl for
standard Ornstein-Uhlenbeck process, BBridge for Brownian Bridge, fbm for
Fractional Brownian motion; can also be a function defined by the user.

method [string]: Defines the method to be used, can be either "MERF" or "REEMforest".

eta [numeric]: The size of the neighborhood for the stability score. Can be a vector,
in this case, returns the stability scores corresponding to all the values of the
vector.

nvars [numeric]: The number of variables to consider among the most impotant vari-
ables. Can be a vector, in this case, the function returns the stability scores
corresponding to all the values of the vector.

Value

A matrix with all the stability scores corresponding to the eta and nvars values. The $i$th row
corresponds to the $i$th value of eta while the $i$th column corresponds to the $i$ value of nvars.
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